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Abstract The application of Formal Concept Analysis to the problem of information

retrieval has been shown useful but has so far lacked any real analysis of the idea of

relevance ranking of search results. SearchSleuth is a program developed to experi-

ment with the automated local analysis of Web search using Formal Concept Analysis.

SearchSleuth extends a standard search interface to include a conceptual neighborhood

centered on a formal concept derived from the initial query. This neighborhood of the

concept derived from the search terms is decorated with its upper and lower neighbors

representing more general and special concepts respectively. SearchSleuth is in many

ways an archetype of search engines based on Formal Concept Analysis with some

novel features. In SearchSleuth, the notion of related categories – which are themselves

formal concepts – is also introduced. This allows the retrieval focus to shift to a new

formal concept called a sibling. This movement across the concept lattice needs to re-

late one formal concept to another in a principled way. This paper presents the issues

concerning exploring, searching and ordering the space of related categories. The focus

is on understanding the use and meaning of proximity and semantic distance in the

context of information retrieval using Formal Concept Analysis.
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1 Introduction

SearchSleuth is one of several Formal Concept Analysis-based Web metasearch en-

gines that provide local analysis of search results for query refinement and labeled clus-

tering [1,2]. These metasearch engines work via the creation of a conceptual space from

polled search results – using search API’s such as Yahoo – which are then organised via

Formal Concept Analysis and displayed in a variety of ways. SearchSleuth is novel

because previous efforts do not create a formal concept representing the query itself

within the information space – meaning the conceptual space induced is representative

of the results returned from the query, not the query terms. SearchSleuth overcomes

this problem by creating a conceptual space as a neighborhood of the search concept :

the formal concept derived from the search terms. The resulting neighborhood is com-

prised of “Generalizations” (upper neighbors), “Specializations” (lower neighbors) and

“Related Categories” (also called siblings). Fig. 1 shows the SearchSleuth interface

and these components.

Fig. 1 The SearchSleuth interface, including the top five results after searching for formal
concept analysis. Generalization/Specialization of the formal concept is shown above/below
the text-box. “Related Categories” (or siblings) are to the right of the text-box. The relevance
rankings of the result set conform to those supplied by the Yahoo search API.

By centering the conceptual space around the search concept, the resulting query

refinement operations are closely coupled to the search terms used in the creation of the

space. SearchSleuth was first presented at the Concept Lattices and their Applica-

tions Conference (CLA 2007) in October 2007 [3] but was subsequently improved and

refined. At the International Conference on Conceptual Structures (ICCS 2008) [4] the

authors elaborated the idea of “Related Categories” (siblings) and explored the notion

of how “close” to the current formal concept the siblings concepts were. This paper

combines both presentations in a complete, improved and extended form.

At this point there is no definitive study of the relative performance of Search-

Sleuth, compared to other metasearch engines – usability trials are currently being
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conducted – but SearchSleuth is promising, its design and architecture sufficiently

novel compared to other information retrieval efforts based on Formal Concept Analysis

to be reported.

However, the main contribution of this paper is that it assays proximity in the

topological neighborhood of a concept lattice and relates this idea to distance and sim-

ilarity metrics. We seek to answer the question, how “close” or “similar” are the formal

concepts in the local lattice neighborhood and how widely throughout the lattice do

we need to search to find “relevant” formal concepts to the current search concept?

This raises many questions: the definitions of topological proximity in a concept lat-

tice; a study of the metrics for measuring concept similarity and distance; and an

understanding of relevance for a formal concept.

The results of our study condition the design of SearchSleuth, and are also

relevant to other document browsing and information retrieval that use Formal Concept

Analysis. However, these results will also apply to many other applications of Formal

Concept Analysis. This paper is therefore suited to a general readership in Artificial

Intelligence and Mathematics with an interest in concept lattices. Situating our analysis

within the content of browsing an information space using concept lattices motivates

the study of local proximity and similarity of concepts in Formal Concept Analysis.

2 Navigation and Conceptual Neighborhoods: Background

SearchSleuth is the culmination of 10 years of research and development in appli-

cations of concept lattices [5–9,?]. It combines results from three disciplines: Formal

Concept Analysis, information retrieval and document browsing using Formal Concept

Analysis and usability and interface design, involving a iterative design science infor-

mation systems methodology that evaluates how Formal Concept Analysis can be used

effectively in an applied context.

2.1 Information Retrieval and Formal Concept Analysis

Web search is a difficult problem given the WWW’s immeasurably large and constantly

changing content and structure. Traditionally, Web search is initiated by entering one or

more keywords into a search engine, then by reviewing the results until the appropriate

site is found. This process requires a good understanding of the link between the search

terms and the result set and the iterative nature of the retrieval on the Web is a well-

recognised interaction paradigm for search [10].

Traditional Web search returns a ranked list of results. The result set takes the form

of snippets: URL, title, a short summary and various details such as date last accessed.

It is the text-based components of the snippet that aid in creating a conceptual infor-

mation space of the results. One problem transitioning Web search to Formal Concept

Analysis is that document ranking is often ignored when Formal Concept Analysis

performs concept clustering. All results are treated equally when the formal concept is

induced, and this issue is usually addressed by reproducing the rank ordering on any

result set realized as the formal concept object’s extent.

Another difficulty is that ranking methods use techniques such as link structure,

popularity and referring pages. As such, it cannot be assumed that all results of a

multiple term query will contain all queried terms. Even a single query term may yield

a page that does not contain that term. This may seem counter intuitive, but if enough

Web pages link to a result page that does contain the search term, and the term is

very infrequent, that page’s rank may be inflated to feature in the result set.
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Carpineto and Romano’s metasearch engine CREDO [1] (shown in Fig. 2) uses

an iceberg lattice [11] to generate clusters for given search terms. Search terms are

submitted to the Yahoo search API and the results returned input into a formal context.

The formal context is built with the results as objects and the terms found in the result

summaries as attributes. The most general concepts of the concept lattice are computed

and displayed as a tree. The user can then interact with a DHTML tree widget (shown

in Fig. 2 (left)) to view named clusters of the results.

Fig. 2 The CREDO Web Search Application [1]: CREDO displays the uppermost concepts
derived from keywords featured in search results.

CREDO does not include the search terms themselves when creating the context

because it expects that all results contain all search terms. As Web search does not

behave exclusively as a boolean search for keywords in document this assumption may

not hold (as previously discussed) and the original search terms may (in some cases)

be missing from the context. CREDO displays two levels of the lattice with users

initially placed at the top-most concept. This pseudo-tree display is initially restricted

to a single level, with user interaction a single label can be expanded at a time. This

reduces clutter and confusion; labels that may appear in multiple branches are not

shown because expansion of a label occurs one branch at a time.

Another FCA Web search application is Koester’s FooCA[2]. FooCA provides one

of the richest interfaces for the construction of a formal context based on Web search

results. By taking result snippets as objects and terms found in the results as at-

tributes, a formal context is created and presented to the user. A screenshot of FooCA

is shown in Fig. 3. Like CREDO and FooCA, SearchSleuth uses the ‘result has term’

representation for building a formal context. This means each result from the search

is considered an object, and all terms contained in the results title and summary are

considered attributes. In the case of SearchSleuth (and optionally in FooCA) all

words in the result set are stop-word filtered and stemmed to their lexical root. This

reduces the size of the formal context and the complexity of the conceptual space. It
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also reduces redundant terms with common lexical roots; it assumes that the terms

‘wood’ and ‘woods’ can be consolidated into a single stem. FooCA builds and displays

the entire context derived from the search results. The context is build without query

terms and the program provides powerful controls to influence the formation of the for-

mal context. The user is shown the entire formal context in one cross-table as shown

in Fig. 3 (lower). By viewing the entire information space as a cross-table, the user is

never positioned within the conceptual space, rather a perspective of the entire space

is defined by the query, its parameters and the resulting cross-table.

There are four alternative ways of presenting an information space of a concept

lattice. The first is to reveal the entire conceptual space as a cross-table (as in FooCA).

The second is to partially reveal the concept lattice with a pseudo-tree widget as

in CREDO. The third is to display a line diagram of a complete concept lattice as

in CEM [12]. A forth way is to situate its user in the information landscape, with a

perspective centered on the query used to create it. The design logic is that this should

give more insight into the meaning of the query with respect to other terms that appear

in the result set (or surrounding it). This is the approach adopted by SearchSleuth.

Fig. 3 Koester’s FooCA Web Search Application [2]: An example of improvement . By allowing
users to see and access the quality of the various terms in the current search results, successive
search results increase retrieval quality.

2.2 Usability and Interface Design

The interface design of SearchSleuth is driven by the idea that we should adopt a lo-

cal view of the concept lattice and this is supported by usability testing [13]. Kim and

Compton [14,15] presented a document navigation paradigm using Formal Concept

Analysis and a neighborhood display. Their program, KANavigator uses annotated

documents that can be browsed by keyword and displays the direct neighborhood (in

particular the lower neighbors) as its interface. At the time, KANavigator emphasis

on the use of labels as representations of single formal concepts (as opposed to a line

diagram of the concept lattice) broke with many Formal Concept Analysis traditions.

However, subsequent usability studies have shown that an interface based on a concep-

tual neighborhood has significant merit [16], simplifying the interaction and enabling
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users non-expert in concept lattices to interact with a concept lattice without any

instruction in lattice theory or Formal Concept Analysis.

ImageSleuth [17] is a tool for navigating collections of annotated images and for

content-based retrieval using Formal Concept Analysis. It combines methods of Formal

Concept Analysis for information retrieval with the graphical information of the con-

cept’s extent conveyed in image thumbnails. In addition to established methods such as

keyword search and inclusion of attributes that move the user to upper/lower neighbors,

a query-by-example function and restrictions to attribute sets are included. Metrics on

formal concept similarity are discussed and applied to ranking and automated discovery

of relevant concepts: from both concepts and semi-concepts. ImageSleuth (shown in

Fig. 4), used and extended this interface idea to explore image collections using Formal

Concept Analysis. By showing upper and lower neighbors of the current concept and

allowing navigation to these concepts, users can refine or generalise their position in

the information space. This is aided by the use of pre-defined conceptual scales (called

perspectives) that can be combined to define the attribute set of the lattice which

forms the conceptual space (see Fig. 4 (left)). In Fig. 4 we see that two perspectives

are activated, SimpleGameplay and Advancedcolours and the current formal concept

consists of 6 objects (rendered as thumbnail images) which all share the attributes

{Environment, Needs, red}. Two upper neighbor formal concepts can be reached by

removing Red or Environment and the numbers represented on each attribute are the

number of objects in the extent of each, i.e., removing Environment will induce a for-

mal concept with 7 images in its extent and removing Red will induce a formal concept

with 221 images in its extent.

Fig. 4 ImageSleuth presents only the extent of the current concept as thumbnails and gen-
eralizations/specializations by removal/addition of attributes to reach the upper and lower
neighbors (top/bottom). Pre-defined scales (perspectives) are displayed on the left.

Likewise, three lower neighbor concepts are available through the addition of any of

Orangered, Maron,Brown and Coral, the numbers on each represent the cardinality of

the extent. A minor association rule is evident since all images with Maron also contain

Brown and visa versa so Maron,Brown decorates the downward navigation link.

As is evident from Fig. 4, ImageSleuth uses most of its interface to show thumb-

nails of images in the extent of the current concept. As a result the user never sees a line

diagram of a concept lattice. Instead, the lattice structure around the current concept

is represented through the list of upper and lower neighbors that allow navigation to

super- or sub-concepts.



7

SearchSleuth employs the same conceptual neighborhood paradigm for interac-

tion. Unlike ImageSleuth, SearchSleuth’s formal context is not static, so the space

is rebuilt with each navigation step. This is because computing the entire domain,

the Web, as a conceptual neighborhood would be computationally prohibitive and so

the refinement process has to incrementally change the current formal context based

on subsequent refinements. Incrementality in this way also maintains diversity in the

search context by allowing the user to navigate to “alternative” formal concepts, other

than the one induced by the search terms. These are called “Related Categories” or

siblings and are shown to the right of the text-box in Fig. 1.

3 The Domain of SearchSleuth: Context Building

SearchSleuth uses the ‘result has term’ representation to build a formal context. The

“search” formal concept for SearchSleuth (As, Bs) is created on demand for each

query; this suits the dynamic nature of the Web but it can be expensive to compute.

The formal objects are the individual snippets, and the formal attributes are the terms

contained in the title and summary of each result. But before the search formal concept

(As, Bs) is computed we need to reduce the context to something manageable.

Recall, a formal context K := (G, M, I) is a triple where G is a set of formal

objects, M is a set of attributes and I is an incidence relation between the objects and

the attributes. I ⊆ G ×M is a binary relation where (g, m) ∈ I is read “object g has

attribute m” and written as gIm. The formal context K can be pictured as a cross-table

and since the complexity of computing the concept lattice is O(|C||M |(|G|+ |M |) [18],

so too a fundamental concern in computing concept lattices is reducing |M |. Also, since

the cardinality of the object set |G| is fixed by the Yahoo search API, progress can

only be made by reducing |M |, the size of the set of attributes in K.

This is achieved in two ways, firstly attributes (terms) are extracted from the title

and summary after stemming and stop-word filtering has been performed. Stemming

reduces words to their lexical root (e.g. jump, jumping and jumps are all reduced to

jump). Stop-word filtering also removes words without individual semantic merit, for

example a, the and another. Both stemming and stop-word removal are standard tech-

niques in information retrieval and have the effect of reducing |M | without a noticeable

reduction in semantic quality.

The formal context K is is then further reduced by removing attributes (terms)

with low support in the result set. Every attribute with less than 5% of the objects

in the incidence relation is removed. This is called context reduction and differs from

clarification [19] where both attributes and objects are removed. Reduction decreases

the computational overhead involved in computing the concept lattice by reducing the

cardinality of the attribute set |M |. Experience shows that reduction rarely effects

the computed conceptual neighborhood as the terms removed are scarce within the

conceptual space. In the example given in Fig 1 for the query Formal Concept Analysis,

|M | is reduced by an order a magnitude.

For a subset of the objects, A ⊆ G we define the set of common attributes A↑ as:

A↑ := {m ∈ M | (g, m) ∈ I,∀g ∈ A}

and dually, for a subset of attributes, B ⊆ M we can define the set B↓ of objects

having all the attributes from B as:

B↓ := {g ∈ G | (g, m) ∈ I,∀m ∈ B}
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For convenience A↑ and B↓ are often written as A′ and B′.
Once the formal context is reduced as K′, the search concept (As, Bs) can com-

puted. This is done by taking the query terms as attributes and deriving the formal

concept using the reduced context K′, namely, (As, Bs) is a formal concept of (G, M, I)

iff:

As ⊆ G, Bs ⊆ M, As = Bs, and Bs = As.

The set A is called the extent and B the intent of the formal concept (A, B). The up-

per neighbors of this formal concept are then derived and used to expand the reduced

context K′ to K′′. This is done by querying the Yahoo search API with the attributes

of each upper neighbor and inserting the results into a new context K′′. Results for

these ancillary/expanded searches to produce K′′ are limited to fewer results, namely

50% of the size of the initial result set. The process of building the new context K′′

increases the number of terms in the conceptual space based on a single level of general-

ization. It makes the conceptual space larger and richer with objects in the immediate

neighborhood of the current search concept. (As, Bs) is then recomputed from K′′.
In summary, the original context is reduced via the removal of attributes via stem-

ming and stop-word removal and low support attributes, then the context is expanded

by those attributes of the upper neighbors to give more meaningful focus to the neigh-

borhood of the current formal concept (As, Bs). The amount of time spent reducing

and expanding the context, and computing and recomputing (As, Bs), is incidental to

the latency of the search API, namely this process occurs in 1/10th of the time it takes

to transfer the results from the Yahoo search API.

4 Building the Information Space

As explained, after the context is expanded, the search concept (As, Bs) is recomputed

as it has been enhanced by the production of K′′. The upper and lower neighbors of

(As, Bs) are computed next. A concept C is said to be the upper neighbor (or cover)

of Z iff we have C > Z, and/but there is no concept Y with C > Y > Z. A concept

C is said to be the lower neighbor of (or covered by) a concept Z iff we have C < Z,

and/but there is no concept Y with C < Y < Z. The sets of upper and lower neighbors

of a concept C are written as UN(C) and LN(C) respectively.

The DownSet (DS) and UpSet (US) of a formal concept C are defined as follows:

DS(C) := {y | y 6 x for an x ∈ C} US(C) := {y | y > x for an x ∈ C}

Consider now a set of concepts X, then UN(C) is defined as the union of all upper

neighbors of the concepts in X. Dually, consider the set of concepts Y , LN(C) is defined

as the union of all lower neighbors of the concepts in Y , i.e., we set:

UN(X) :=
[
{UN(C) | C ∈ X} UN(Y ) :=

[
{LN(C) | C ∈ Y }

The next step is to compute the related categories or sibling concepts. In fact, we

define a hierarchy of three different notions of siblings called Type I, Type II and Type

III siblings. Child Siblings (CS) and Parent siblings (PS) are defined as follows:

CS(C) := UN(LN(C))\{C} PS(C) := LN(UN(C))\{C}

Put another way, siblings constitute formal concepts created by the removal of an

attribute (or attributes) that define an upper neighbor (UN), and the inclusion of an

attribute (or attributes) that define a lower neighbor (LN).
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Exact Siblings (ES or Type I siblings) are those which are both Parent and Child

siblings, since they represent a stricter version of the notion of siblings they are referred

to as Type I siblings and PS and CS are termed Type II siblings:

ES(C) := [LN(UN(C)) ∩ UN(LN(C))]\{C}

General Siblings (GS – Type III siblings) define an even broader set of sibling concepts

and are defined:

GS(C) := [DS(UN(C)) ∩ US(LN(C))]\({C} ∪ UN(C) ∪ LN(C))

namely, anything strictly between some lower and some upper neighbor.

Child Siblings (CS), Parent Siblings (PS), and Exact Siblings (ES) form anti-

chains, but General Siblings (GS) do not.

An example is shown in Fig. 5 in each of the two lattices presented the ES, CS,

PS and GS of the concept marked C are listed.

Fig. 5 Diagram demonstrating the Parent Sibling (PS), Child Siblings (CS), Exact Sibling
(ES) and General Siblings (GS) concepts of the concept labeled with a C in two lattices.

Apply the same idea in ImageSleuth and using the full intent as labels of sibling

concepts, a display is rendered for the user (shown in Fig. 1). The primary feature of

the display is the text-box which the query is entered. It is considered representative

of the search concept, and thus is centered in the display. Upper neighbors are shown

above this text entry box, displayed as text labels (shown in Fig. 1). The labels are the

attributes which would be removed to navigate to that upper neighbor. These labels

are preceeded by a minus symbol (-) to reinforce the notion of removal, in this case

there is a single label -analysis which leads to the upper neighbor.

Lower neighbors are similarly displayed (also indicated with arrows in Fig. 1), but

placed below the text-box. These labels are the attributes which would be added to

navigate to that lower neighbor. Like upper neighbor labels, these labels are preceeded

by a symbol to reinforce the labels meaning, namely the plus symbol (+) and the

notion of inclusion, these are the labels +fca, +data ,+lattice, +context, +based,

+mathematics, +mining, +theory +method and +conceptual.

The display order of the upper and lower neighbors is defined by extent size, larger

extents displayed first (left-most). Extent is representative of the ‘importance’ or promi-

nence of the labels within the current information space. Extent is also used to aid in
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the coloring of the label’s background. The higher the extent on a lower neighbor,

the deeper the (blue) block shade behind that concepts label. Upper neighbors are

displayed with the same principle but with (red) block shading.

One method for dealing with the return of empty-extents from term-based searching

is to provide users with a list of the terms entered so that they can incrementally

remove terms to unconstrain the search. SearchSleuth explores an approach based

on variations on defined distance and similarity metrics in the Formal Concept Analysis

literature [20,21] in order to find similar relevant concepts.

Exact Siblings (ES) or “Related Categories” are shown to the right of the text

entry box (indicated by the arrow in Fig. 1) and are indicative of related concepts.

The complete intent of these concepts is displayed within square brackets preceded by

a tilde (~[...]). This helps group the concept intents and aids distinguishing between

related concepts. Unlike upper and lower neighbors, Exact Siblings are ordered by

similarity. The similarity metric is based on work by Lengnink [20] and was initially

adapted for use in ImageSleuth. The metric uses the size of the common objects and

attributes of the concepts. For two concepts (A, B) and (C, D), we set:

s((A, B), (C, D)) :=
1

2

„
|A ∩ C|
|A ∪ C| +

|B ∩D|
|B ∪D|

«
. (1)

The similarity measurement in Eqn (1) is used to order the exact sibling concepts,

while highlighting remains based on extent size. Coloring on sibling labels is based

on grey block shading, the ES’s included in Fig. 1 are the labels, ∼[formal concept

fca] and ∼[formal concept context].

By clicking any of the possible concept labels, the query is set to the intent of the

selected concept and the query process is restarted. This is an important restructuring

step as a change in the query will change the result set, and in order for the information

to be valid a new context needs to be recomputed.

Looking back to Fig. 1, we see the search concept shown is based on the query

Formal Concept Analysis. It shows a single upper neighbor -analysis which inter-

estingly shows an implication that +formal and +concept are implied by +analysis, so

+analysis always appears when +formal and +concept appear. The first of the lower

neighbors is the acronym +fca. This is followed by the terms +lattice, +mathematics

and +theory. These labels are good examples of specialization from the search concept.

This conceptual neighborhood induced in Fig. 1 is based on 115 formal objects. The

initial number of attributes for this example was 623, after reduction of the context

through the removal of stop words, stemming and low support attributes, the number

of attributes is in K′′ is reduced to 40. This offers a tremendous reduction in context

complexity, and therefore computation time but these numbers also reflect the need to

search a subset of conceptual neighborhood to maintain relevance and search diversity.

A main question in the design of SearchSleuth is whether the definition of Exact

Siblings (ES) provides sufficient space for proximity search of neighboring categories.

Should we also be looking at Child Siblings (CS), Parent Siblings (PS) and General

Siblings (GS) siblings as well? The remainder of the paper addresses this issue in detail.
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5 Conceptual Distance, Similarity and Siblings

We have two measures to consider the proximity of formal concepts. In addition to

similarity (s) defined in Eqn. (1) we also have for two formal concepts (A, B), (C, D),

dg((A, B), (C, D)) :=
1

2

„
|A\C|+ |C\A|

|G| +
|B\D|+ |D\B|

|M |

«
where dg is the distance of the concepts (A, B), (C, D) [20]. To ease comparison between

the two measures, let

dl((A, B), (C, D)) := 1− s((A, B), (C, D))

Let us first observe that dl and dg are metrics in the mathematical understanding,

i.e., dg satisfies for arbitrary concepts x, y, z: dg(x, y) > 0 and dg(x, y) = 0 ⇔ x = y

(non-negativity and identity of indiscernibles), dg(x, y) = dg(y, x) (symmetry), and

dg(x, z) 6 dg(x, y) + dg(y, z) (triangle inequality). The triangle inequalities can easily

be shown by straight-forward computations, and the remaining properties are easily to

be seen. Next, note that we have

dl((A, B), (C, D)) =
1

2

„
|A ∪ C| − |A ∩ C|

|A ∪ C| +
|B ∪D| − |B ∩D|

|B ∪D|

«
(2)

dg((A, B), (C, D)) =
1

2

„
|A ∪ C| − |A ∩ C|

|G| +
|B ∪D| − |B ∩D|

|M |

«
(3)

Comparing Eqns. (2) and (3), we see that they differ in that in (2), we divide through

|A∪C| and |B ∪D|, whereas in (3), we divide through |G| and |M |. Therefore, dl is a

local distance, focusing on the shared attributes and objects of the two formal concepts

being compared, and dg is a global distance, using all the attributes and objects in the

formal context (hence the names dl and dg). The choice of measurement to use therefore

depends on the sensitivity of the proximity measure required. The preferred approach

for SearchSleuth is proximity in the conceptual neighborhood to the current formal

concept. Therefore, the local measure (dl) is considered most suitable.

One can however easily combine the two measures. Let l ∈ [0, 1], measuring the

desire of a local point of view (l = 0 means the user wants a purely global point of

view, and l = 1 means the user wants a purely local point of view). Then the resulting

distance (distl) measure is,

distl((A, B), (C, D)) := l · dl((A, B), (C, D)) + (1− l) · dg((A, B), (C, D)). (4)

6 Relationships between Metric and Sibling Types Explored

The design approach of SearchSleuth is to explore the ‘conceptual neighborhood’

of a given concept. To grasp the ‘conceptual neighborhood’ idea SearchSleuth takes

advantage of two fundamentally different notions of neighboorhood. On the one hand,

we use the lattice-theoretic notions of sibling, which does not take the sizes of the

concept-extents or intents into account. On the other hand, similarity and distance are

set-theoretic notions (they do not take the lattice-order into account). In the next two

paragraphs, we investigate the different types of siblings and then the two similarity

metrics.
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As we have seen earlier, the notion of a siblings is finely-grained divided into exact

siblings (ES= Type I), parent- and child siblings (PS or CS = Type II), and general

siblings (GS = Type III). This provides a hierarchy of sibling types: Each Type I

sibling is a Type II sibling, and each Type II sibling is a Type III sibling.

Apart from this hierarchy of type inclusion, we cannot generalize about the number

of siblings in each of the different siblings types. To be more precise: If nI, nII, nIII ∈ N0

are three numbers with nI 6 nII 6 nIII and nII 6= 1, then there exists a lattice with an

element c that has nI Type I siblings, nII Type II siblings, and nIII Type III siblings.

An example for such a lattice is given below in Fig 6. In Fig 6, for each sibling of C, the

most special sibling type is inscribed on the vertex. That is in the diagram, nI vertices

are labelled with ‘I’, nII−nI vertices are labelled with ‘II’, and nIII−nII−nI vertices

are labelled with ‘III’.

c

III III

II II II

II

I I

Fig. 6 Example lattice showing the spread of Type I, II and III siblings from the concept C.

For the notions of local (dl) and global (dg) distance, a somewhat similar consid-

eration applies. Due to Eqns. (2) and (3), in each lattice, for any concepts x, y, we

have

dl(x, y) > dg(x, y) .

On the other hand, there are examples (one is given in the following subsection) of

lattices where there are two concepts c, n which are arbitrary close with respect to the

local metric, but arbitrary distant with respect to the global distance metric.

The question remains whether there are dependencies between the lattice-theoretic

(i.e., siblings) and the set-theoretic (i.e., metrics) notions of conceptual neighborhood.

We will investigate some examples in the following sections. As these examples will

show, the two notions are somewhat orthogonal but help in determining the most

appropriate related categories in SearchSleuth.

6.1 Exact Siblings (ES) and Proximity Metrics

We first consider an example where we have an exact sibling n of a concept c, and we

investigate whether we can draw some conclusions about the local or global distance

between c and n. The example we consider is the following concept-lattice:

g
4

m
1
g
1

m
2
g
2

g
3

m
3

m
4

c n

Fig. 7 Example for comparing the local and global distance for an Exact Sibling.
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In this diagram and the following diagrams in Figs. 8, 9, 10, the gi and mi do

not denote objects or attributes, but the numbers of objects resp. attributes which

generate the concept, i.e., the gi and mi are the numbers of objects and attributes

in the common diagrams of concept lattices. For example, if (G1, M1) is the bottom

concept and for c = (G2, M2), we have g2 = |G2| − |G1|. Two concepts from Fig. 7 are

given names, namely c and n. We have:

s(c, n) =
1

2

„
g1

g1 + g2 + g3
+

m4

m2 + m3 + m4

«
dg(c, n) =

1

2

„
g2 + g3

g1 + g2 + g3 + g4
+

m2 + m3

m1 + m2 + m3 + m4

«
For fixed g2, g3, g4, m1, m2, m3 (e.g., g2 = g3 = g4 = m1 = m2 = m3 = 1), we have

lim
g1→∞
m4→∞

dl(c, n) = 1− 1

2
(1 + 1) = 0 and lim

g1→∞
m4→∞

dg(c, n) =
1

2
(0 + 0) = 0

i.e., c and n can be arbitrarily similar with respect to both dl and dg.

On the other hand, for fixed g1, g3, m3, m4, we have

lim
g2→∞
m2→∞

dl(c, n) = 1− 1

2
(0 + 0) = 1 and lim

g2→∞
m2→∞

dg(c, n) =
1

2
(1 + 1) = 1

(similar for g2, m3, and g3, m2, and g3, m3), i.e., c and n can be arbitrarily different

(again with respect to s and to dg).

Now let ε1, ε2 > 0. Let g3, g4, m1, m3 be fixed. By first choosing g2 and m2 suf-

ficiently large, we can obtain s(x, n) < ε1, and by then choosing g1, m4 sufficiently

large (which does not affect s(c, n)), we can obtain dg(c, n) < ε2, i.e., we can achieve

in a local understanding (i.e., w.r.t. dl), the concepts c and n are very similar, whereas

in a global understanding ((i.e., w.r.t. dg), the concepts c and n are very distant. To

summarize, even for the most special case of being an exact sibling n of a given concept

c, we cannot draw any conclusion about the local or global distance between c and n.

6.2 The Proximity of Type I Siblings versus Non-Siblings Concepts

A concept n which is a sibling for a given concept c belongs, from a lattice-theoretic

point of view, to the conceptual neighborhood of c; a concept x which is not a sibling

of c does not belong to the conceptual neighborhood. Is this property reflected by the

distances dl and dg? We consider again an example where n is an exact sibling of c.

g
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m
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g
1
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g
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g
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m
5

c n

x

Fig. 8 Example for comparing Exact Siblings to Non-Siblings.
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6.2.1 Similarity

In terms of similarity we have:

sn := s(c, n) =
1

2

„
g1

g1 + g2 + g3
+

m4 + m5

m2 + m3 + m4 + m5

«
sx := s(c, x) =

1

2

„
g1 + g2

g1 + g2 + g4 + g5
+

m5

m2 + m4 + m5

«
Note that we can have g1 = 0, m1 = 0, g4 = 0, and m5 = 0, but all other numbers

must be > 1. Now, n could be more similar to c than x, equally similar, or less similar,

as the following examples show.

g1 g2 g3 g4 g5 m1 m2 m3 m4 m5 2 · sn = 2 · s(c, n) 2 · sx = 2 · s(c, x)

1 1 1 0 1 1 1 1 1 1 1/3 + 2/4 = 5/6 2/3 + 1/3 = 1

1 1 1 1 1 0 1 1 1 1 1/3 + 2/4 = 5/6 2/4 + 1/3 = 5/6

1 1 1 1 1 0 1 1 1 0 1/3 + 1/3 = 2/3 2/4 + 0/2 = 1/2

Running a computer-program checking all values for gi and mi with a threshold of

8 yields:

s(c, n) > s(c, x) s(c, n) < s(c, x) s(c, n) = s(c, x)

804.068.208 913.112.127 2.746.449

Therefore, the cases in which s(c, n) > s(c, x) and s(c, n) < s(c, x) do not signif-

icantly differ and we cannot conclude that siblings are generally more similar than

non-siblings. We therefore conclude by counterexample that siblings are not generally

more similar to a given formal concept than non-siblings.
6.2.2 Distance

Similarly, repeating the analysis in terms of the distance metric dg in Fig 8, we have:

dn := s(c, n) =
1

2

„
g2 + g3

g1 + · · ·+ g5
+

m3 + m4

m1 + · · ·+ m5

«
dx := s(c, x) ==

1

2

„
g4 + g5

g1 + · · ·+ g5
+

m2 + m4

m1 + · · ·+ m5

«

Now the question becomes: is n neccessarily less distant to s than x? Now the examples

are:

g1g2g3g4g5 m1m2m3m4m5 2 · dn = 2 · dg(c, n) 2 · dx = 2 · dg(c, x) result

0 1 1 0 2 0 1 1 2 0 2/4 + 2/4 = 1 2/4 + 3/4 = 5/4 d1 < d2

0 1 1 1 1 0 1 1 1 0 2/4 + 2/3 = 7/6 2/4 + 2/3 = 7/6 d1 = d2

0 1 1 0 1 0 1 1 1 0 2/3 + 2/3 = 4/3 1/3 + 2/3 = 1 d1 > d2

Now the computer program output for a threshold of 8 is:

dg(c, n) > dg(c, x) dg(c, n) < dg(c, x) dg(c, n) = dg(c, x)

908.328.121 788.136.280 23.462.383

Again the cases dg(c, n) > dg(c, x) and dg(c, n) < dg(c, x) do not significantly differ.

To summarize, even for the most special case of being an exact sibling n of a given

concept c, we cannot draw any conclusion that n is closer to c compared to a non-sibling

using distance or similarity measures.
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6.3 The Proximity of Type II versus Type III Siblings Concept

There are clearly different strengths of being a sibling depending on sibling type. We

still could hope that this is reflected in the metrics. In the example provided in Fig 9,

we consider Type II siblings of a concept c with the more general Type III siblings and

check whether the Type II siblings are closer to c than the Type III siblings. In terms

of similarity we have:

s1 := s(c, n1) =
1

2

„
g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

«
s2 := s(c, n2) =

1

2

„
g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

«
s3 := s(c, n3) =

1

2

„
g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

«

m
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m
5

m
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m
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n
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g
3

1

g
2 2

3

Fig. 9 Example for comparing Type II and Type III Siblings.

In this example, there is no order relationship between s1, s2, and s3. We can have

s1 < s2 < s3 or s3 < s1 < s2 or s1 = s2 < s3 etc. Any order combination is possible.

The following table shows examples for all possible strict orders of s1, s2, s3 (examples

for cases like s1 = s2 < s3 are left out due to space limitations).

g1 g2 g3 g4 g5 g6 m1 m2 m3 m4 m5 m6 2 · s1 2 · s2 2 · s3 result

1 1 1 1 1 1 1 1 2 1 1 2 1/3 + 2/7 1/4 + 2/5 1/5 + 2/4 s1 < s2 < s3

1 1 2 1 2 1 1 2 2 1 2 2 1/4 + 2/9 1/5 + 2/7 1/7 + 2/6 s1 < s3 < s2

1 1 1 1 1 1 1 1 1 1 1 2 1/3 + 2/6 1/4 + 2/5 1/5 + 2/4 s2 < s1 < s3

1 1 1 1 1 1 1 1 1 1 2 2 1/3 + 2/7 1/4 + 2/6 1/5 + 2/5 s2 < s3 < s1

2 2 2 1 2 1 1 1 2 1 2 1 2/6 + 1/7 2/7 + 1/5 2/9 + 1/4 s3 < s1 < s2

1 1 1 1 1 1 1 2 1 1 2 1 1/3 + 1/7 1/4 + 1/6 1/5 + 1/5 s3 < s2 < s1

1 1 1 1 1 1 1 1 2 1 1 1 1/3 + 1/6 1/4 + 1/4 1/5 + 1/3 s1 = s2 < s3

1 1 1 1 2 1 1 1 2 1 2 2 1/3 + 2/8 1/4 + 2/6 1/6 + 2/5 s3 < s1 = s2

1 1 2 1 2 1 1 1 2 1 2 1 1/4 + 1/7 1/5 + 1/5 1/7 + 1/4 s1 = s3 < s2

1 1 1 1 1 1 1 1 1 1 1 1 1/3 + 1/5 1/4 + 1/4 1/5 + 1/3 s2 < s1 = s3

1 1 1 1 1 1 1 1 1 1 2 1 1/3 + 1/6 1/4 + 1/5 1/5 + 1/4 s2 = s3 < s1

2 1 2 1 2 1 1 1 2 1 1 1 2/5 + 1/6 2/6 + 1/4 2/8 + 1/3 s1 < s2 = s3

1 1 1 1 2 1 1 1 2 1 1 1 1/3 + 1/6 1/4 + 1/4 1/6 + 1/3 s1 = s2 = s3
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Similarly, repeating the analysis in terms of the distance metric, we have:

d1 := dg(c, n2) =
1

2

„
g2 + g3

g1 + · · ·+ g6
+

m2 + m3 + m4 + m5

m1 + · · ·+ m6

«
d2 := dg(c, n2) =

1

2

„
g2 + g3 + g4

g1 + · · ·+ g6
+

m2 + m4 + m5

m1 + · · ·+ m6

«
d3 := dg(c, n3) =

1

2

„
g2 + g3 + g4 + g5

g1 + · · ·+ g6
+

m2 + m5

m1 + · · ·+ m6

«
Again here is no relationship between d1, d2, and d3, and any order combination

is possible, as the following table shows:

g1g2g3g4g5g6 m1m2m3m4m5m6 2 · d1 2 · d2 2 · d3 result

1 1 1 1 1 1 1 1 1 1 2 1 2/6 + 5/7 3/6 + 4/7 4/6 + 3/7 d1 < d2 < d3

1 1 1 1 1 1 1 2 1 2 2 2 2/6 + 7/10 3/6 + 6/10 4/6 + 4/10 d1 < d3 < d2

1 1 1 1 1 1 1 2 2 1 2 2 2/6 + 7/10 3/6 + 5/10 4/6 + 4/10 d2 < d1 < d3

1 1 1 1 1 1 1 1 2 1 1 1 2/6 + 5/7 3/6 + 3/7 4/6 + 2/7 d2 < d3 < d1

1 1 1 1 1 1 1 1 1 2 1 1 2/6 + 5/7 3/6 + 4/7 4/6 + 2/7 d3 < d1 < d2

1 1 1 1 1 1 1 1 2 2 1 1 2/6 + 6/8 3/6 + 4/8 4/6 + 2/8 d3 < d2 < d1

1 1 1 1 2 1 1 1 1 1 1 2 2/7 + 4/7 3/7 + 3/7 5/7 + 2/7 d1 = d2 < d3

1 1 1 1 1 2 1 1 1 2 1 1 2/7 + 5/7 3/7 + 4/7 4/7 + 2/7 d3 < d1 = d2

1 1 1 1 1 1 1 1 1 2 2 2 2/6 + 6/9 3/6 + 5/9 4/6 + 3/9 d1 = d3 < d2

1 1 1 1 1 1 1 1 2 1 2 2 2/6 + 6/9 3/6 + 4/9 4/6 + 3/9 d2 < d1 = d3

1 1 1 1 1 2 1 1 2 1 1 1 2/7 + 5/7 3/7 + 3/7 4/7 + 2/7 d2 = d3 < d1

1 1 1 2 1 1 1 1 1 1 1 2 2/7 + 4/7 4/7 + 3/7 5/7 + 2/7 d1 < d2 = d3

1 1 1 1 1 1 1 1 1 1 1 1 2/6 + 4/6 3/6 + 3/6 4/6 + 2/6 d1 = d2 = d3

To summarize the analysis: we cannot draw any conclusion that Type II siblings of

a concept c are any closer to c, using dl or dg, than the weaker Type III siblings, i.e.,

we cannot say that Type II siblings better represent related categories than Type III

siblings.

6.4 Type I versus Type II versus Type III Siblings Concepts

Fig. 10 is a combination of the first and the third example. In terms of similarity we

have:

sn := s(c, n) =
1

2

„
g1

g1 + g2 + g7
+

m6

m2 + m6 + m7

«
s1 := s(c, n1) =

1

2

„
g1

g1 + g2 + g3
+

m6

m2 + m3 + m4 + m5 + m6

«
s2 := s(c, n2) =

1

2

„
g1

g1 + g2 + g3 + g4
+

m6

m2 + m4 + m5 + m6

«
s3 := s(c, n3) =

1

2

„
g1

g1 + g2 + g3 + g4 + g5
+

m6

m2 + m5 + m6

«
Note that changing g7 and m7 does not affect the similarity measures between

c and n1, n2, n3, resp. According to Section 6.1, for high values of g7 and m7,
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Fig. 10 Example for comparing all three types of siblings

the similarity between c and n (i.e., dg) decreases. We can easily use the values for

g1, . . . , g6, m1, . . . , m6 of the last example to get all possible orderings of s1, s2, s3, and

choose g7 and m7 such that d < s1, s2, s3, i.e. Type II siblings, are not necessarily

more similar to c than Type III siblings.

In fact, we have again that for s, all 24 strict orders of c, n, s1, s2, s3 can appear.

And the same holds for dg. (As we have both for s and dg 24 such strict orders, thus

48 examples, these examples are not provided due to space limitations). In short, no

general statements which render some preference for siblings used as Related Categories

in terms of similarity and distance.

7 Conclusion

The notion of Type I, II and II siblings are purely lattice-theoretic notions, whereas the

notion of distance and similarity are purely set-theoretic notions. In order to find similar

concepts to a given concept (related categories), there is no hint that the closest siblings

contain the most similar concept. This might sound disappointing at a first glance, but

in practice our observations lead to an important design feature in SearchSleuth.

Computationally, the neighboring siblings to the current formal concept (whether of

Type I, II or III) are the easiest concepts to compute and therefore represent natural

candidates for related category search. Our design question was should we extend our

search of the conceptual neighborhood from exact siblings (ES) to other sibling types?

The answer is no because there is no guarantee that formal concepts with the best

distance and similarity will be found in any of the sibling spaces. We have shown that

to find the optimally close formal concepts involves searching and computing all formal

concepts in the entire concept lattice. Such a search would render SearchSleuth

intractable. Ranking the ES space on similarity gives the diversity we need in the

SearchSleuth interface without any great overhead.

SearchSleuth extends current Formal Concept Analysis Internet search engines by

positioning the user within the information space, rather than placing the user arbi-

trarily or presenting the entire space. This allows generalization and categorization

operations to be performed against the current query concept. SearchSleuth overcomes

a number of practical difficulties in the use of Formal Concept Analysis for Internet

Search, namely a practical approach to the construction of a sparse context and the

categorization operation, where the conceptual focus is moved to a sibling concept of

the search concept. These paper explains how related categories are derived using a

combination of order-theoretic notions of neighborhood in combination of set-theoretic
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definitions of concept similarity, the approach has clear limitations in the sense that

there is no guarantee that the most similar formal concepts to the current concept

are in its immediate conceptual neighborhood. This finding allows us to constrain the

search for similar concepts to an arbitrary search horizon that is easy to compute.
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