
Contents

1 Formal Logic with Conceptual Graphs 3
Frithjof Dau
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Short Introduction to Conceptual Graphs . . . . . . . . . . . 4

1.2.1 Simple Conceptual Graphs . . . . . . . . . . . . . . . 4
1.2.2 Nested Conceptual Graphs . . . . . . . . . . . . . . . 7
1.2.3 Negation in Conceptual Graphs . . . . . . . . . . . . . 8
1.2.4 Conceptual Graphs and First Order Logic . . . . . . . 8
1.2.5 Reasoning with Conceptual Graphs . . . . . . . . . . . 9

1.3 Conceptual Graphs from a Formal Point of View . . . . . . . 9
1.3.1 Sowa’s Syntax . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Sowa’s Definition of Φ . . . . . . . . . . . . . . . . . . 10
1.3.3 Sowa’s Understanding of Negation . . . . . . . . . . . 11
1.3.4 Sowa’s Calculus . . . . . . . . . . . . . . . . . . . . . . 12

1.4 The General Approach for Formal Logic with CGs . . . . . . 13
1.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.3 Reasoning Facilities . . . . . . . . . . . . . . . . . . . 18

1.5 Different Forms of Conceptual Graphs . . . . . . . . . . . . . 20
1.5.1 Simple Conceptual Graphs . . . . . . . . . . . . . . . 20
1.5.2 Nested Conceptual Graphs . . . . . . . . . . . . . . . 24
1.5.3 Conceptual Graphs with Atomic Negation . . . . . . . 25
1.5.4 Conceptual Graphs with Full Negation . . . . . . . . . 27

1.6 Works not Cited . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 31

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1





Chapter 1

Formal Logic with Conceptual
Graphs

Frithjof Dau

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Short Introduction to Conceptual Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Conceptual Graphs from a Formal Point of View . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 The General Approach for Formal Logic with CGs . . . . . . . . . . . . . . . . . . . . . 13
1.5 Different Forms of Conceptual Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6 Works not Cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.1 Introduction

This chapter aims to give an introduction into the formal theory of con-
ceptual graphs (abbreviated by CGs), with an emphasis on how CGs can be
understood as a diagrammatic approach to formal logic. Of course, as it can
already easily be seen from the huge variety of topics covered in this book,
formal logic is only one of many aspects of CGs. Anyhow, maybe not the ma-
jority, but at least a vast amount of CG research has focused on this specific
facet, and even Sowa emphasizes the logic aspect of CGs.

CGs are based on diagrammatic representation of logic, namely Peirce’s
(1839-1914) existential graphs (for introductions into existential graphs, see
[Zem64, Rob73, Shi02]). In [Sow97] Sowa writes that ‘conceptual graphs
(CGs) are an extension of existential graphs with features adopted from lin-
guistics and AI. The purpose of the system is to express meaning in a form
that is logically precise, humanly readable, and computationally tractable.’

The system of existential graphs is divided into three parts named Alpha,
Beta and Gamma. Alpha corresponds to propositional logic, and Beta cor-
responds to first-order predicate logic. Gamma is more complicated: It cov-
ers features of higher order and modal logic, the possibility to express self-
reference, and other features. Due to its complexity, it was not completed by
Peirce. Peirce’s existential graphs and Sowa’s CGs cannot be directly com-
pared. Sowa adopted many ideas of existential graphs, even from Gamma,
but CGs have a different and richer syntax, and they are tailored to better
suit the needs of contemporary knowledge representation systems. Anyhow,
Sowa’s goal CGs to be ‘logically precise’ and his reference to existential graphs
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4 Conceptual Structures, the life, the universe, and ∀

clearly hints to the logical alignment of CGs. This is more explicitely expressed
in [Sowa], where Sowa states that ‘CGs have been developed as a graphic rep-
resentation for logic with the full expressive power of first-order logic and with
extensions to support metalanguage, modules, and namespaces.’

In the following, we scrutinize CGs in terms of formal logic. First, in
Sec. 1.2, we give a short introduction into CGs, as they have been introduced
by Sowa. In this section, some core notations of CGs are defined. Next, in
Sec. 1.3, we shortly investigate whether Sowa’s CGs are indeed ‘logically pre-
cise’, and we will see that they not suit the needs of contemporary formal
logic. For this reason, much research on the formal theory of CGs aims to
fix the formal gaps and flaws of CGs. In Sec. 1.4, an overview over differ-
ent approaches to turn CGs into a mathematically precise system of logic is
given, and a core notation for a formal theory is provided. In different works,
different fragments of CGs are elaborated in a precise manner. An overview
over these fragments is given in Sec. 1.5.

A final remark to the definitions in the following sections has to be made.
Different authors have used different notations, and the following definitions
aim to select the most convenient ones among these. A term which is defined
as it is used in this chapter is set in small caps, like vocabulary. If we refer
to a notation which is not used in this volume, it is set in italics, like support.

1.2 Short Introduction to Conceptual Graphs

In this section, an introduction into the theory of CGs, as they have been
invented by Sowa, is provided.

1.2.1 Simple Conceptual Graphs

In the following, the broad range of CGs is illustrated by several examples.
The first one, given below, is probably one of the best known CGs.

*on MAT:1CAT: Yoyo 2

The boxes in this graph are called concept boxes. We have to stress that
usually, the term concept istead of concept box is used, but this term is often
used in a much broader, often semantical understanding in knowledge repre-
sentation. Moreover, it can be confused with the formal concepts of Formal
Concept Analysis. Finally, by using the term ‘box’, we refer to some extent
to the diagrammatic representations of CGs. For these reasons, this chapter
sticks to the use of the term concept box. When in Section 1.4 the formal-
ization of CGs by means of mathematical graphs is provided, we will speak
of concept vertices instead. In each concept box, we have two entities: A



Formal Logic with Conceptual Graphs 5

type label and a referent. In the graph above, the two concept boxes
contain two different kinds of referents. The referent ‘Yoyo’ in the left box
is a name for an object. The referent ‘∗’ in the right box is called generic
marker, thus the right concept box is called generic concept box. The
generic marker denotes an unqualified object, i.e., it can be understood as an
existential quantification. The type labels of the concept boxes are ‘Cat’ and
‘Mat’, respectively, and the concept boxes encode the information that the
referents belongs to the type. Thus the left concept box encodes the atomar
piece of information that Yoyo is a cat, and the right concept box encodes the
information that there exists a mat. Type labels are ordered in a sub-type-
relation, according to their level of generality. For example, CAT is a subtype
of ANIMAL. An ordered set of types is often called support, type hierarchy,
taxonomy or alphabet.

Besides the concept boxes, the graph contains an relation oval, labelled
with ‘on’. The concept boxes are linked with arcs to the relation oval.
The relation in the oval relates the referents of these concept boxes. In our
example, the meaning of the relation oval is ‘Yoyo is on the (unknown) mat’.
So, the meaning of the whole graph is ‘Yoyo is a cat, there is a mat, and Yoyo
is on that mat’, or ‘the cat Yoyo is on a mat’ for short.

Of course, the order of the arguments of the relations matter. In the dia-
grammatic representation, the order is represented by indexing the arcs which
link the concept boxes to the relation oval with numbers. Another way to de-
pict the order of the arguments is the use of use arrows instead of arcs in the
diagrams. The corresponding diagram is then

*on MAT:CAT: Yoyo .

This approach works fine if only relations of arity 1 or 2 are used, but for
relation with arities higher than 2 (e.g., ‘between’, which is a ternary relation),
this approach fails. So indexes are preferrable.

Sowa uses various kinds of referents, for example

• names: PERSON: John , DOG: Lucky, Matula ,

• quantifiers: MEAT: ∗ (some meat), DOG: ∀ (all dogs),

• measure specifications: TIME-PERIOD: @5 seconds , Money:@$5

• control marks ?, !, #: DOG: ? (which dog?), Dog: Lucky ! (emphasis

on Lucky), MEATBALL: # (the meatball),

• generic plurals: BONE: {∗} (some bones) or BONE: {∗}4 (four bones),

• prefixes: PERSON: Dist{Bill, Mary}@5 (five persons distributively in-

cluding Bill, Mary, and others), or LADY: Cum{∗} (a set of Ladies).
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(all examples taken from [Sow92]).
These various kinds of referents verify the comprehensive knowledge rep-

resentation claim of CG. On the other hand, it is clear that most of them
go beyond the expressiveness of first order logic. For the elaboration of CGs
in term of formal logic, we will restrict the referents to object names or the
generic marker.

Below, another example is depicted, which covers more of the constituent
elements of CG.

*

* *

on

*

knows MAT:

DOOR: TABLE:between1

2

3

1CAT: Yoyo 22

PET:

1: Tim

First of all, please note that concept boxes can be linked to more than one
relation oval, and that we have a triadic relation in this graph. The type label
‘>’ in the leftmost concept box is the universal type, which contains every
object (of the respective universe of discourse) in its extension. As the type
labels are usually ordered, > is the greatest element in this order. Finally
note the dotted line between the concept boxes with the type labels Cat and
Pet, respectively. This dotted line is a coreference link, expressing the
identity of the referents in the linked concept boxes. Concept boxes which are
linked with a coreference link are said to be coreferent. A coreference
set is a set of (pairwise) coreferent concept boxes. The two boxes with the
type labels Cat and Pet are coreferent, and the subgraph consisting of these
two boxes and the the coreference link expresses that Yoyo is a cat and there
is a pet which is the same as Yoyo, or for short: Yoyo is both a cat and a pet.
The meaning of the whole graph is therefore Tim knows Yoyo, Yoyo is both
a cat and a pet, and Yoyo is on a mat which is between a door and a table.

Although most practical examples are, CGs do not need to be connected.
In the last example, we used two concept boxes, one of them being generic,
and a coreference link to express that Yoyo is both a cat and a pet. Below,
another graph is depicted which has exactly the same meaning as the last
one. Now we use two non-connected, non-generic concept boxes to express
that that Yoyo is both a cat and a mat.

*

* *

onknows MAT:

DOOR: TABLE:between1

2

3

1CAT: Yoyo 221: Tim

PET: Yoyo

The CGs which can be constructed by means of concept boxes, relation ovals
and coreference links, where the referents can be names for objects or the
generic marker, are called simple conceptual graphs (SCGs). The class of
SCGs has the expressiveness of the ∃,∧-fragment of first order logic (including
identity). It is the most important and prominent fragment of CGs.
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There are two kinds of SCGs which cannot be further decomposed. A
singleton graph is a CG which consists only of a single concept box. A
star graph is a CG which contains a single relation oval, and concept boxes
which are linked to that oval. Our first example is a star graph. Finally, even
having no concept box or relation oval at all is a CG, the so-called blank
graph.1

1.2.2 Nested Conceptual Graphs

We have already seen a range of different referents in CGs, but one impor-
tant referent, which vastly extends the expressiveness of CGs , is still missing.
Sowa allows for whole CGs as referents in concept boxes. This construction
is called nesting. When CGs are nested, some CGs make statements and
assertions about other CGs, i.e., the system of CGs offers the possibility of
meta-level statements. Concept boxes whose referents are CGs are called con-
texts.2 Besides concept boxes which contain CGs as referents, the complete
area of the CG is a context as well, which is called the outermost context.
Below we present a well-known example of a nested CG.

: *

SITUATION:
marry SAILOR: *

PERSON: Tom believe

PROPOSITION:

PERSON: Mary want

Besides the outermost context, this graph contains two further contexts,
namely the concept boxes of type PROPOSITION and SITUATION (which
are common types of contexts). The graph can be read as follows: The person
Tom believes a proposition, which is described by a graph itself. The propo-
sition states that the person Mary wants a situation, which again is described
by a graph. In this situation we have a concept box > : ∗ which is connected
with a coreference link to the concept box PERSON:Mary in the context
above. So the situation is that Mary marries a sailor. The formal under-
standing of the whole graph is now: The person Tom believes the proposition
that the person Mary wants the situation that Mary marries a sailor. In short:
The person Tom believes that the person Mary wants to marry a sailor.

1The blank graph corresponds to the empty sheet of assertion in Peirce’s existential graphs.
2The term ‘context’ occurs in several meanings and implementations in logics, linguistics
or artificial intelligence. An introduction into the various ideas of contexts is beyond the
scope of this chapter. We refer to [Sowb] or Chap. 5 of [Sow00] for an introduction and
discussion of contexts in conceptual graphs.
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1.2.3 Negation in Conceptual Graphs

For the discussion of CGs in terms of mathematical logic, it is important
to note that Sowa expresses negation with contexts, too. As Sowa states in
[Sow97]: ‘The EG [Existential Graph] negative contexts are a special case
of the CG contexts. They are represented by a context of type NEGA-
TION whose referent field contains a CG that states the proposition which
is negated.’ Concept boxes of type NEGATION are introduced by Sowa as
abbreviations for contexts of type proposition with an unary relation ‘NEG’
attached to it (see [Sow92], where he says that ‘Negation (NEG) is one of the
most common relations attached to contexts’), and Sowa often abbreviates
these contexts by drawing a simple rectangle with the mathematical negation
symbol ¬ (e.g. in [Sow99]).

A well known example for a CG with negations is presented below. The
device of two nested negation contexts can be understood as an implication.
So the meaning of the graph is ‘if a farmer owns a donkey, then he beats it’.

* *FARMER: own DONKEY:

: * beat : *

1.2.4 Conceptual Graphs and First Order Logic

Sowa states in [Sow84] that ‘any formula in first-order logic can be expressed
with simply nested contexts and lines of identity.’ (the term ‘line of identity’
is adopted from Peirce’s existential graphs and refers in this quotation to the
coreference links of CGs). In particular CGs are designed to have at least
the full power of first order logic, that is first order logic with identity, object
names and predicate names, but without function names. In the following,
we will use the abbreviation FOL for this style of logic. Anyhow, as we have
seen, the system of CGs is richer than FOL.

To show how CGs and FOL are related, Sowa defines a formal operator Φ
which maps CGs to FOL. The definition of Φ can be found in [Sow84], and
we find various comments and examples among the chapters of Sowa. The
Φ-operator is useful for making the structural differences between CGs and
the symbolic elaborations of FOL explicit, and it serves as a semantics for
CGs as well. An example for the Φ-operator is the translation of the CG of
Section 1.2.3 to

¬∃x.∃y.(FARMER(x) ∧DONKEY (y) ∧ owns(x, y) ∧ ¬beat(x, y)) .

The last formula can is logically equivalentbe to the simplified formula

∀x.∀y.((FARMER(x) ∧DONKEY (y) ∧ owns(x, y)) → beat(x, y)) .
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1.2.5 Reasoning with Conceptual Graphs

When he developed the system of CGs, Sowa did not only adopt the iconic-
ity and many syntactical and semantical elements of existential graphs. He
also adopted the calculus of existential graphs. First of all, Sowa distinguishes
between equivalence rules, which do not change the meaning of a CG, special-
ization rules, which (usually) specialize the meaning of a CG, and finally
generalization rules, which in turn generalize the meaning of a CG. All rules
transform a graph into a new graph. Equivalence rules can be carried out
in both directions, whereas both specialization rules and generalization rules
can be carried out only in one direction, and the specialization rules and gen-
eralization rules are mutually inverse. A simple example of a generalization
rule is the generalization of a type or a referent in a concept box.

In [Sow84] Sowa provides a calculus which is a one-to-one translation of
Peirce’s rules for existential graphs into the system of CGs. In [Sow97] or in
[Sowa], this system is refined. Below, Sowa’s rules from [Sow97] are given:

Erasure: In a positive context, any graph u may be replaced by a general-
ization of u; in particular, u may be erased (i.e. replaced by the blank, which
is a generalization of every CG).

Insertion: In a negative context, any graph u may be replaced by a spe-
cialization of u; in particular, any graph may be inserted (i.e. it may replace
the blank).

Iteration: If a graph u occurs in a context c, another copy of u may be
drawn in the same context c or in any context nested in c.

Deiteration: Any graph u that could have been derived by iteration may
be erased.

Equivalence: Any equivalence rule (copy, simplify, or double negation)
may be performed on any graph or subgraph in any context.

1.3 Conceptual Graphs from a Formal Point of View

In some sense the system of CGs is not fixed, but open-minded. It is de-
signed to be used in fields like software specification and modelling, knowledge
representation, natural language generation and information extraction, and
these fields have to cope with problems of implementational, mathematical,
linguistic and even philosophical nature. Sowa addresses many of these prob-
lems in his landmark work [Sow84]. Due to the complexity of the system
of CGs, it is nearly impossible and perhaps not even desirable to consider
the overall system as an approach to formal logic. Consequently, all works
–including Sowa’s– which link CGs and formal logic only cover specific frag-
ments of CGs. Anyhow, we have seen that one goal of CGs is to provide a
humanly readable form of FOL.
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In this section we scrutinize Sowa’s CGs from the the more viewpoint of
formal logic. It has to be acknowledged that in his works, Sowa provides core
ideas for an formal elaboration of CGs. In the strict and narrow framework of
mathematical logic, these core ideas are still ambigious and lack mathematical
preciseness. This is the main reasons why several authors elaborated frag-
ments of CGs in minute mathematical detail. Before we come to an overview
of these elaborations in the next section, this section first describes in which
respects Sowa’s ideas have to be refined from a mathematical point of view.

1.3.1 Sowa’s Syntax

First of all, Sowa wanted to provide at least for a core of CGs a precise
definition, termed abstract syntax, which was intended to result in an ISO-
standard (see [Sow99, Sowa]). In the working draft [Sowa] for the definition
he writes: ‘Informally, a CG is a structure of concepts and conceptual rela-
tions where every arc links a concept node [a concept box] and a conceptual
relation node [a relation oval]. Formally, the abstract syntax specifies CGs as
mathematical structures without making any commitments to any concrete
notation or implementation.’ The definition of the abstract syntax is not a
mathematical definition, but it is written in common English. Furthermore,
the definitions are incomplete, and many aspects of CGs which should be
covered by the definition are only explained in the comments. So the first
step for a formal elaboration of CGs has to provide mathematical definition
for fragments of CGs. This is usually done by means of mathematical graph
theory, as it is described in Sec. 1.4.1.

1.3.2 Sowa’s Definition of Φ

Next we consider Sowa’s definition of the Φ-operator, which is the ‘classical’
approach to equip CGs with a semantics. The fallacies in Sowa’s definition of
Φ have been addressed by several authors, for example by Chein and Mugnier
[CM92], Wermelinger [Wer95], and Dau (the author of this chapter) [Dau03b].

Wermelinger writes in [Wer95]) that ‘Sowa’s original definition of the map-
ping (Φ) is incomplete, incorrect, inconsistent, and unintuitive, and the proof
system is incomplete, too.’ Although this judgment is formulated very harshly,
it has somewhat to be acknowledged from a mathematical point of view. First
of all, Wermelinger critizises that the universal type >, although it has a spe-
cial meaning, is not treated in a special way. This can be considered a minor
gap, which can be easily fixed. Another minor gap is that Sowa translates the
blank graph into (), which is not a well-formed formula. More importantly,
Wermelinger reveals that Sowa’s algorithm to translate CGs into FOL formu-
las is not sufficiently specified. Depending on the the order in which graphs in
a given context are translated, the algorithm yields different formulas which
are not semantically equivalent, but the algorithm does not impose such an
order. This is a surely a more serious gap.
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Finally we consider how Sowa translates contexts into formulas. As CGs
go beyond FOL, Sowa writes that the Φ-operator ‘is only defined for features
[of CGs] that can be represented in predicate calculus’ [Sow92]. As Sowa
does not clearly specify what features he talks about, different formal elabo-
rations of CGs in fact cover different features. For example, different kinds
of quantifiers are addressed. More importantly is the handling of nestings on
formal elaborations. In [Sow92], Sowa provides the following graph for the
proposition ‘Tom believes that Mary wants to marry a sailor‘ (this graph is
more complicated than the first graph we provided for the same proposition,
because Sowa explicates in this graph the linguistic roles of the verbs):

expr believe ptnt

expr want ptnt

PROPOSITION:

PERSON: Mary

: * agnt marry SAILOR: *

PERSON: Tom

SITUATION:
ptnt

Afterwards, he translates this graph to the following formula:

∃x.Person(Tom) ∧ believe(x) ∧ expr(x, Tom) ∧ ptnt(x,
∃y.∃z.PERSON(Mary) ∧ want(y) ∧ SITUATION(z)∧
expr(y, Mary) ∧ ptnt(y, z) ∧ descr(z,
∃u.∃v.(marry(u) ∧ SAILOR(v) ∧ agnt(u, Mary) ∧ ptnt(u, v))))))

In this formula, whole formulas occur as arguments of relations, namely of
ptnt (patient) and descr (description), which Sowa uses to express nestings in
FOL. But using formulas as arguments in relations is a feature beyond FOL,
so this translation cannot be considered as translation to FOL. This gap in
handling nestings is fixed by different formal elaborations in different ways.

1.3.3 Sowa’s Understanding of Negation

We have seen that in CGs, negations are implemented as special contexts,
namely as contexts of type ‘Proposition’, linked to a relation oval labelled with
‘neg’. Recall that contexts are used to draw meta-level propositions on CGs.
Usually, negation is understood as a logical operator, and its properties have
to be captured by the semantics and by any calculus. On the other hand, in
CGs negation changes to a meta-level operator. This is stated quite explicit
by Sowa in [Sowb]: ‘To support FOL, the only necessary meta-level relation
is negation.’ Expressing negation as a meta-level operator might leads to
difficulties in the formal treatment. To discuss this, we consider the following
two CGs G1 and G2.
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G1 := * *onCAT: MAT: , G2 := * *on

PROPOSITION:

CAT: MAT:

The meaning of the first graph is well known: It is ‘a cat is on a mat’.
The meaning of the second graph is, strictly speaking, ‘there exists a propo-
sition, which states that a cat is on a mat’. Quoting a proposition changes
its character: There is a crucial difference between asserting and quoting a
proposition, between using and mentioning a linguistic item. In particular
these two graphs have different meanings. Now we consider the graph below:

G3 := *
neg

neg
PROPOSITION:

PROPOSITION:

*onCAT: MAT:

G3 contains a double negation. In the usual understanding of negation as
a logical operator, G1 and G3 are equivalent. On the other hand, in the CG
understanding, G3 formalizes a statement on a statment (first nesting) on
a statement (second nesting), i.e. we have a meta-meta-statement. These
points of view are conflicting. For this reason, formal elaborations deviate
from Sowa’s meta-level understanding of negation and implement negation on
the logical level.

1.3.4 Sowa’s Calculus

An example of Sowa’s rules for reasoning with CGs has been given in Section
1.2.5. We have already seen that in different writings of Sowa, the set of rules is
varied. Moreover, the rules are only informally described in common English.
To obtain a precise and non-ambibous understanding on how the rules act on
CGs, a formal definition for the rules is needed.

Sowa’s rules are basically Peirce’s rules for existential graphs, being adapted
to the notations of CGs. Anyhow, first there are some crucial syntactical
differences between existential graphs and CGs. In existential graphs, both
existential quantification and identity are expressed by the same syntacti-
cal device, the so-called line of identity. In CGs, we have separate devices
for these two logical functions: Existential quantification is expressed by the
generic marker, and identity is expressed by coreference links. Moreover, in
CGs, we have names for constants, a syntactical device which is missing in
existential graphs. This leads to a higher expressiveness of CGs. The syn-
tactical differences and the higher expressiveness have to be reflected by the
calculus. To some extent, Sowa provides rules which cover these differences,
but it is not clear whether these rules are sufficient. Sowa does neither prove
the soundness nor the completeness of his set of rules for CGs.
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In fact, it may be doubted that Sowa’s rules are complete. A proof that
Sowa’s rules are not complete cannot be provided due to missing formal defi-
nitions of the syntax, semantics and calculus for CGs. Anyhow, we provide a
few examples of entailments between graphs which are unlikely to be mirrored
by proofs with Sowa’s rules. First of all, the calculus has to cover the special
meaning of the universal type >. For example, it should be allowed to derive
> : Tom , if Tom is a valid object name, and it should be possible to derive
> : ∗ , too. This seems to be impossible applying the calculus of Sowa.
Next, it seems that coreference links are not adequately treated by the

calculus. For example, if the following graph on the left is a well-formed
CG (which is not clear from the definition of CGs), it should be provably
equivalent to the CG on the right:

*DOG: *DOG:

As identity is a transitive relation, the next two graphs should be provably
equivalent, too:

* : SnoopyDOG: PET: * and * : SnoopyDOG: PET: *

Finally, given the graph

BIG_THING:morning star BIG_THING:evening star

PLANET: evening starPLANET:morning star

visible in the eveningvisible in the morning

it should be possible to derive

morning starPLANET: visible in the evening

It is difficult to decide from Sowa’s definition of the calculus whether these
derivations are possible. A formal elaboration of the calculus allows to ad-
dress this question, and together with a formal elaboration of the syntax and
the calculus, it is then possible to mathematically prove its soundness and
completeness.

1.4 The General Approach for Formal Logic with CGs

Before we discuss different classes of CGs in more detail, this section pro-
vides a general overview how formal logic can be carried out by means of CGs,
and introduces some core notations.
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Roughly speaking, the scrutiny of this chapter follows the common (model-
theoretic) layered approach of formal logic, which can be outlined by the terms
syntax, semantics, and calculus. That is, first CGs are introduced as purely
syntactical structures. Particularly, the concept boxes and relation ovals in
graphs are labelled with names for concepts and relations. These syntactical
structures carry per se no meaning: They gain their meaning when some sort
of formal semantics is defined. Thus after defining the syntax, the semantics
is formally elaborated as well. Finally reasoning facilities, which are sound
and complete w.r.t. the semantics, are provided.

Following this approach is not the sole possibility to formalize CGs. Partic-
ularly Wille and some scholars are interested in CGs as an extension of FCA
for allowing judgments and conclusions in a semantical manner. That is, he
does not strictly separate syntax and semantics of CGs. In his approach, he
does not assign names to the concept boxes and relation ovals of CGs, but
already (formal) objects, (formal) concepts and relations of a given power
context family instead. That is, each CGs is closely linked to a given power
context family. Conclusions in Wille’s approach are not drawn with the hep
of inference rules of some adequate calculus, but via an algebraic investigation
of the graphs. The approach following symbolic logic is called syntactical
or logical approach, the approach of Wille is called semantical or alge-
braic approach. To some extent, the syntactical approach corresponds to
the open world paradigm, whereas the semantical approach correspond to the
closed world paradigm. This chapter focuses on the syntactical approach. For
the semantical approach, please see Chapter ??.

Even for the syntactical approach to CGs, unfortunately there exists a vari-
ety of different formalizations with different notations. This chapter provides
some references to these different notations, but due to space limitations, it
does not provide the complete definitions. Instead, only the most convenient
among the different formalizations is given. A more comprehensive compari-
son of the different formal approaches to SCGs can be found in [JPA06].

1.4.1 Syntax

The starting point in fixing the syntax is defining a set of names. In liter-
ature, there are different terms used for the set of names. The CG standard
[Sow99] refers to this set as a type hierarchy. Authors like Prediger, Klinger
and Dau use the term alphabet. Other authors, eg Chein, Mugnier, Baget,
Kerdiles, Simonet use vocabulary or support as well. Following the common
notations of symbolic logic and knowledge representation, we will use the
term vocabulary. Basically, a vocabulary consists of three ordered sets of
the names for the objects, concepts (the types), and relations. Again, differ-
ent authors use different notations here. The core notation of a vocabulary if
fixed in the following definition.
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DEFINITION 1.1 Vocabulary A vocabulary is a triple V := (O, C,R)
of finite and pairwise disjoint sets O, C and R. The elements of O are called
object names or individual markers. The elements of C are called con-
cept names. The elements of R are called relation names.

Besides the object names, we assume to have a further sign ‘∗’, called the
generic marker. We assume to have a special concept name >, called the
universal concept. To each relation name R ∈ R, we assign its arity
ar(R) (ar(R) ∈ {1, 2, 3, . . .}). We set Rn := {R ∈ R | ar(R) = n}.

Finally, the sets of object, concept and relation names are ordered:

• We have an order ≤O on the set O∪{∗}, with O ≤O ∗ for each O ∈ O,
and different elements of O are incomparable,

• We have an order ≤C on the set C, where > is the greatest element, and

• We have an order ≤R on the set R, where relation names with different
arities are incomparable.

‘Conceptual graphs are also graphs’ is the title of a 1995 report of Chein
and Mugnier [CM95], nicely describing the fundamental approach to a formal-
ization of CGs by means of mathematical graph theory. This approach has
already been addressed by Sowa, who suggests to formalize CGs as labelled
bipartite graphs (for this reason, Sowa sometimes speaks of concept nodes
and relation nodes). The first formal definitions and theoretical results for
SCGs have been provided in the landmark work [CM92]. In this approach,
the underlying structure of a CG is a multi-bipartite graph (C,R,E), where
C and R are disjoint sets of vertices, and E is a multiset, where each element
e ∈ E is a pair (c, r) with c ∈ C and r ∈ R. Concept boxes of CGs correspond
to concept vertices c ∈ C, relation ovals correspond to relation vertices r ∈ R,
and the arcs of CGs correspond to edges e ∈ E. So each edge links a con-
cept vertex (aka node) and a relation vertex (aka node). The bipartite graph
(C,R, E) is augmented with additional mappings, which capture the full syn-
tax of CGs. Labelling functions are provided which assign to each concept
vertex a concept name (the type of the concept box) and an object name (the
referent of the concept box), and to each relation vertex an relation name.
The n edges incident to a given relation vertex r are labelled with 1, . . . , n to
indicate the order of the argument of the relation of r. Coreference links are
modelled as a equivalence relation on C.

Another possibility is to formalize CGs as directed multi-hypergraphs. This
approach has been first suggested by Wille in [Wil97]. In this approach, the
underlying structure of CGs is a directed multi-hypergraph (V,E, ν), where
V is a set of vertices, E is a set of edges, and ν : E →

⋃
k∈N0

V k is a mapping.
Now concept boxes correspond to vertices v ∈ V , and relation ovals correspond
to edges e ∈ E. Note that, in contrast to the multi-bipartite approach, in this
approach the order of the arguments of a relation is already been formalized.
To ease the notation, in later works the term directed multi-hypergraph has
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been replaced by relational graph. Again, relational graphs have to be
augmented with labelling functions to capture the object, concept and relation
names concept boxes resp. relation ovals are labelled with.

Roughly speaking, the ‘Montpellier-school’, i.e. Chein and Mugnier and the
scholars, follow the approach on bipartite graphs, and the ‘Darmstadt-school’,
i.e. Wille and his scholars, follow the relational graph approach. As multi-
bipartite graphs, including the labelling function which captures the order
of the arguments for the relations, and relational graphs can be mutually
transformed into each other, it is a mere matter of taste which of these two
approaches is taken. Anyhow, Baget (from the Montpellier-school) slightly
advocates in [Bag03] the relational graph approach for computational reasons.
This chapter uses the relational graph approach.

It should be noted that the diagrams we presented in Section 1.2 are dia-
grammatic representations of an underlying abstract syntax. Already Sowa
emphasizes in several places that the notation of CGs has to be independent
from their diagrammatic representation. So, in contrast to symbolic notations
of formal logic, we have two layers: A precisely defined abstract syntax, which
is independent of any diagrammatic or topological properties of CGs, and the
–informally given– diagrammatic representations of the abstract syntax. This
might seem obvious, but is has to be acknowledged that some authors working
on other versions of diagrammatic logic miss this important distinction. A
thorough discussion of this issue can be found in [HMST02, Dau04].

To distinguish the more open computer-science based theory of CGs to
the formal mathematical theory, Wille coined the term concept graph for the
mathematizations of CGs. Although this distinction is sensible, the use of
these two different terms might lead to confusion, and it is not adopted by
the whole CG community. For this reason, the term concept graph is, despite
for referencing, not used in this chapter.

Unfortunately, even if we consider only SCGs, nearly all works differ in
significant details. Care has to be taken on how in different works the la-
belling functions for object names and concept names is modelled, and how
and coreference links are implemented. Sometimes the universal type > is
required in the vocabulary, sometimes it is not. Most works assign one ob-
ject name or the generic marker as referent to concept vertices, but some
authors (for example Klinger and Prediger) allow for sets of object names
instead. Most works assign a single concept name to a concept vertex, but
some works allow for a set of concept names, which is interpreted as the con-
junction of the concept names (e.g, [Bag03, CM04]). Coreference links are by
some authors modelled as equivalence relations (e.g. Chein and Mugnier, or
Prediger), sometimes as special edges, labelled with a name for identity (e.g.
[Dau03b, Dau03a, Bag99]). Often coreference is allowed only between generic
concept vertices (e.g., Chein/Mugnier, Prediger), sometimes it is allowed be-
tween arbitrary concept vertices (e.g. Dau). Some of these differences do not
change the expressiveness of the system which is considered (for example, for
SCGs, it does not make a difference whether we allow only single object names
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or sets of object names as referents), some of these difference can (slightly)
change the expressiveness (for example, whether we allow coreference only
between generic concept boxes or between arbitrary concept boxes).

1.4.2 Semantics

In literature, we basically find three kinds of semantics:

• The translation of CGs to FOL formulas by means of Φ.

• The evaluation of CGs in Tarski-style interpretations.

• The evaluation of CGs in power context families.

As mentioned in Section 1.2.4, Φ is the ‘classical’ semantics for CGs. To some
extent, it is not a ‘real’ semantics, but a translation from some syntactical
structures –i.e., graphs– to other syntactical structures –i.e., formulas–. As
formulas of FOL have in turn a precisely defined semantics based on Tarski-
style interpretations, Φ can be understood to provide an ‘indirect’ evaluation
of CGs in Tarski-style interpretations. The semantics via Φ is sometimes
called logical semantics [JPA06]. Unsurprisingly, some authors provide a
direct evaluation of CG in Tarski-style interpretations, i.e., an extensional
semantics. Finally, some authors (the authors of the Darmstadt-school)
provide a called contextual semantics, where CGs are evaluated in power
context families, which are contextual interpretation based on Formal Concept
Analysis. For an introduction into FCA, please see Chapter ??.

All three types of semantics have to reflect the orders of concept names
and relations names of the given vocabulary, and the special meaning of the
universal concept as well. In the following three paragraphs, let C1, C2 ∈ C be
arbitary concept names with C1 ≤C C2 and R1, R2 ∈ Rn be arbitary relation
names with R1 ≤R R2.

For Φ, Sowa proposed to translate the orders into FOL-formulas. For two
concepts C1, C2, the corresponding formula is ∀x : C1(x) → C2(x). Similarly
for the relation names R1, R2, the corresponding formula is ∀x1, . . .∀xn :
R1(x1, . . . , xn) → R2(x1, . . . , xn). Finally, the meaning of > is reflected by
∀x : >(x). The (finite) set of these formulas is denoted Φ(V).

An extensional interpretation is a pair (D, I), where D is a non-empty
set, the universe (of discourse), and I is an interpretation function,
which maps object names to elements of D, concept names to subsets of D,
and relation names of arity n to subsets of Dn. The special properties of the
vocabulary are covered by additionally requiring that I is order-preserving,
i.e. for two C1, C2 it holds I(C1) ⊆ I(C2), and similarly for R1, R2 it holds
I(R1) ⊆ I(R2). Moreover, we require that I(>) = D holds.

Analogously to extensional interpretations, a contextual interpreta-
tion is a pair (~K, λ), where now ~K = (K0, K1, . . .) is a power context family
and λ is a mapping which maps object names to elements of G0, concept
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names to formal concepts of K0 and n-ary relation names to formal concepts
of Kn. Clearly, λ is the contextual counterpart of the extensional interpreta-
tion function I. Again, λ has to be order preserving, i.e. for C1, C2 it holds
λ(C1) ≤ λ(C2), and for R1, R2 it holds λ(R1) ≤ λ(R2). Moreover, we require
that > is mapped to the top-concept of K0.

Given a CG G and an extensional or contextual interpretation, G is then
evaluated in the interpretation to true or false. A precise definition of the
evaluation depends of the kind and definition of the graph and the kind of
the interpretation and is omitted here due to space limitations. If G evaluates
to true in the interpretation, the interpretation is called an (extensional resp.
contextual) model of G, and we write (D, I) |= G resp. ( ~K, λ) |= G. Finally,
if we have a set of CGs G and a CG G such that whenever we have an
interpretation which is a model for all CGs of G, then it is a model for G as
well, we say that G (semantically) entails G, and we write G |= G. If G
consists only of a single graph H, we write H |= G.

Contextual interpretations take benefit only of the order of the formal con-
cepts of the power context family, its lattice structure is not used. The order of
formal concepts in turn is based on the set-theoretical inclusion of the extents
of formal concepts. For this reason, it is possible to assign to each contextual
interpretation ( ~K, λ) an extensional interpretation (D, I) such that we have
( ~K, λ) |= G ⇐⇒ (D, I) |= G. Vice versa, we can assign to each exten-
sional interpretation (D, I) a contextual interpretation ( ~K, λ) such that we
again have (D, I) |= G ⇐⇒ ( ~K, λ) |= G. In the light of this observation,
extensional and contextual interpretations can be considered equivalent. The
details of this transformation can be found in [Dau03b] or [JPA06].

1.4.3 Reasoning Facilities

In literature, we find different kinds of reasoning facilities for CGs. The
most important ones are projections, and sets of rules based on graph trans-
formations. A thorough discussion of these kinds of reasoning facilities goes
beyond the scope of this chapter; only an overview will be provided. Any-
how, some more details will be given in the next section. For all the following
reasoning facilities, in the papers or treatises where they are described it has
been proven that they are sound and complete.

Projections are graph-homomorphisms which respect the orderings of the
names the vertices (and edges, if the relational graph approach is taken) are
labelled with.3 They are applied to SCGs. Roughly speaking, the information
in a SCG G is the collection of the atomar information in the singleton graphs
and star graphs the graph G is composed of, thus if we have a projection
Π : G1 → G2, then each piece of information in G1 can be found in G2 as

3The entailment relation between RDF-graphs is similar to projections. See [Bag04, Bag05,
Dau06] for papers where CG-results are transferred to RDF.
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well. I.e. G2 contains all the information of G1 (maybe more), which in turn is
equivalent to G2 |= G1. Anyhow, projections have to cope with syntactically
different, but semantically equivalent graphs, and with coreference links. More
information on projections can be found in Section 1.5.1.

A set of graph transformations is the form of reasoning which is closest to
the calculi for symbolic formalizations of logic. A graph transformation is a
rule which transforms a graph G1 into a graph G2, and a proof is simply a
sequence of CGs, where each CG in the sequence is obtained from its predeces-
sor by one of the transformations. We can roughly distinguish between simple
and complex graph transformations. A simple transformation transforms G1

into G2 by modifying small parts of G1. Examples are the erasure of an rela-
tion edge, the merging of two concept vertices which are coreferent (with some
constraints for the concept names of these vertices), or the generalization of a
object or concept name in a concept vertex resp. the generalization of a rela-
tion name in a relation edge. Complex graph transformations in turn modify
a whole subgraph of a given CG. Examples are the erasure of a subgraph or
the iteration (making a copy) of a subgraph. Complex transformations are in
most cases inspired by Peirce’s rules for existential graphs.

Roughly speaking, calculi for CGs which include full negation are based
on the complete set of Peirce’s rules, augmented with some simple graph
transformation rules which are needed to cover the syntactical differences
between existential graphs and CGs. The informally given calculus of Sowa
is an example for such a calculus. A formally elaborated example is provided
in [Dau03b]. Calculi for CGs without full negation mostly or even totally
consist of simple graph transformations. Examples for SCGs can be found
in [CM92, CM95, Pre98a, Pre98b, Mug00, Dau03a], for CGs which allow for
negation of concepts and relations in [Kli05], and for nested CGs without
negation in [Pre98a, Pre00].

Besides projections and graph transformations, other forms of reasoning
facilities have been explored as well. First the notion of standard models
has to be mentioned. The basic idea of standard models is to assign to a CG G
a corresponding modelMG in which exactly the information represented by G
is encoded. Once this is done, there are two possibilities to check whether a CG
G1 entails a CG G2. First, we can check whether G2 evaluates to true in the
standard model MG1 of G1. The second is to check whether the information
encoded in the standard modelMG1 of G1 can be found in the standard model
MG2 of G2. This can be verified by a meaning-preserving mapping from MG2

to MG1 . This mapping is, roughly speaking, the semantical counterpart of
the syntactical projection between G2 and G1. Standard models cannot be
constructed for CGs which allow to express disjunction or full negation. They
have been used for SCGs [Pre98a, Pre98b, Dau03a] and CGs which allow for
negation of concepts and relations [Kli01, Kli02, Kli05].

Other approaches to employ reasoning facilities can be based on tableaux
algorithms (see [Ker01] for an tableaux algorithm for CGs with full negation),
or resolution-like calculi combined with projections [MS96, BS06].
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1.5 Different Forms of Conceptual Graphs

This section provides an overview over different formalizations of CGs which
encompass some sound and complete reasoning facilities. This overview is not
intended to be comprehensive. Instead, a (subjective) selection of important
works is provided.

1.5.1 Simple Conceptual Graphs

.
Probably the most prominent and best investigated fragment of CGs is the

class of simple conceptual graphs (SCGs). Nonetheless, as have already been
mentioned in Section 1.4.1, there does exist a variety of different formalizations
and even different understandings of SCGs. Basically, a SCG is a CG without
contexts, which – due to Sowa’s modelling of negation as a special context–
excludes (full) negation. Anyhow, there are at least two finer subdivisions
of SCGs: We will distinguish between non-existential and existential
SCGs, that is SCGs without or with generic markers, and between SCGs
without or with coreference links.

First we provide a possible formalization of SCGs by means of directed
multi-hypergraphs, close to the definition in [Dau03a].

DEFINITION 1.2 Simple Conceptual Graphs A simple concep-
tual graph over V (without coreference links) is a structure G :=
(V,E, ν, κ, ρ) where

• V and E are finite sets of (concept) vertices and (relation) edges,

• ν : E → S
k∈NV k is a mapping (we write |e| = k for ν(e) ∈ V k),

• κ : V ∪ E → C ∪ R is a mapping such that κ(V ) ⊆ C, κ(E) ⊆ R, and
all e ∈ E with |e| = n satisfy κ(e) ∈ Rn, and

• ρ : V → O ∪ {∗} is a mapping.4

The vertices v with ρ(v) = ∗ are called generic vertices, the vertices v with
ρ(v) ∈ C are called object vertices. We set V ∗ := {v ∈ V | ρ(v) = ∗}.

A simple conceptual graph over V with coreference links is a
structure G := (V,E, ν, κ, ρ,Θ), where (V,E, ν, κ, ρ) is a simple conceptual
graph over V and Θ is an equivalence relation on V ∗. Two vertices v, w ∈ V ∗

with vΘw are said to be coreferent.

4The letter ρ is is intended to remind that ρ (rho) maps vertices to their referents.
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Of course, the equivalence relation Θ can be canonically extended to V by
additionally setting vΘw for two non-generic vertices v, w with ρ(v) = ρ(w)
(in some works, i.e. [Mug00], the authors speak then of coidentical instead
of coreferent vertices). Note that with this understanding, even in SCGs
without coreference links, we can have different coreferent vertices, i.e. two
object vertices labelled with the same object name.

Projections The notion of projections as a reasoning facility has already
been proposed by Sowa in [Sow84]. In [CM92], it has been pointed out that
projections are indeed graph-homomorphisms. They respect the orders of the
names, as well as coreference links. For the graphs of Definition 1.2, they can
be formally be defined as follows:

DEFINITION 1.3 Projection Let Gi := (Vi, Ei, νi, κi, ρi,Θi) (i = 1, 2)
be two SCGs. A projection from G1 to G2 is a mapping Π : V1 ∪ E1 →
V2 ∪ E2 which maps vertices to vertices and edges to edges, such that

• ν2(Π(e)) = (Π(v1), . . . ,Π(vn)) for each edge e ∈ E1 with ν1(e) = (v1, . . . , nn),

• κ2(Π(x)) ≤ κ1(x) for each x ∈ V1 ∪ E1,

• ρ2(Π(v)) ≤ ρ1(v) for each x ∈ V1, and

• vΘ1w ⇒ Π(v)Θ2Π(w) for all v, w ∈ V1

Sowa argues that projection is sound, but does not prove its completeness.
The soundness and completeness has been proven for the first time in [CM92].
But for the completeness, an additional constraint is needed. A SCG (without
or with coreference links) is said to be in normal form, if no different concept
vertices are coreferent. We then have for a vocabulary V and two SCGs G, H,
where H is in normal form:

Φ(V),Φ(H) |= Φ(G) ⇐⇒ there exists a projection Π : G → H (1.1)

So projection relies on the target graph being normalized (this restriction has
not been pointed out in [CM92]). A simple example for normal forms is given
below. H is the normal form of G. Both G and H have the same meaning,
but there exists only a projection from G to H, but not vice versa.

G := RC: a C: a1 2
H := RC: a 2

1

A normal form of a graph can be easily computed by merging concept vertices
which are coreferent. But this depends on whether it is possible to compute
a concept name corresponding to the conjunction of the concept names of the
vertices which are merged. This is not always possible. For this reason, in
some works it is required that coreferent vertices are labelled with the same
concept name, and other works consider SCG where vertices can be labelled
with sets of concept names.
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In [CM04], Chein and Mugnier consider existential SCGs with coreference
links, and they overcome the need for normalforms in projections. To do so,
the firstly allow concept vertices to be labelled with sets of concept names,
which are interpreted as their conjunction. More importantly, they introduce
the notion of coref-projections. In their approach, for each vertex v they
consider its coreference class, that is set of all vertices which are corefer-
ent to v. Coref-projections then map coreference classes to coreference classes
instead of vertices to vertices.

Simonet investigates a different approach to eliminate the need for normal-
forms. In [Sim98, CMS98], she provides a new translation Ψ from CGs to
FOL, which covers not only the meaning, but also the syntactical structures
of CGs. With this new semantics, projection is sound and complete without
requiring that the target graph is normalized.

Calculi Sowa provided in [Sow84] a set of simple transformation rules for
SCGs, but this set is not complete [Mug00]. Several works have proposed
different set of rules for SCGs. Prediger considers in [Pre98a, Pre98b] SCGs
with a contextual semantics (in [Pre98b], she considers so-called relational
power context families, the full contextual approach is provided in [Pre98a]).
Prediger generally allows references with more than one object name. In
[Pre98b], she considers non-existential SCGs without coreference links. For
these graphs, a sound and complete calculus composed of ten simple graph
transformations (except one rule which allows to make a copy of the whole
graph) is provided. In her (German) PhD-thesis [Pre98a], this calculus is
extended to existential SCGs with coreference links between generic concept
vertices, which then has eleven rules.

Chein and Mugnier provide for existential SCGs, both for graphs without
and with coreference links, in [CM95, Mug00] sets of sound and complete
graph transformation rules. Similar to Prediger, coreference links only act on
generic concept vertices. The calculus for SCGs without coreference links con-
sists of five rules, called ‘relation duplicate’, ‘unrestrict’, ‘detach’, ‘substract’
(which corresponds to Peirce’s erasure-rule), and ‘join’. When coreference
links are added, detach is replaced by a rule called ‘co-identical split’, and a
new rule ‘coreference deletion’, which allows the erasure of coreference links,
is added.

In [Dau03a] existential SCGs are considered, where coreference links are
modelled by special relation edges labelled with ‘=’ (a similar approach can
be found in [Bag99], where the properties of the identity relation are modelled
by special rule graphs, which are described in the next paragraph). In contrast
to other approaches, coreference links between arbitrary concept vertices are
allowed, even if both are non-generic. The set of rules he considers are exactly
thse rules of his calculus for concept graphs with negation (see Section 1.5.4)
that can be applied to CGs without negation. They are: Erasure, itera-
tion, deiteration, generalization, isomorphism, exchanging references, merging
two vertices, splitting a vertex, >-erasure, >-insertion, identity-erasure and
identity-insertion. This calculus could probably be simplified.
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An “if-then”-statement can not ad hoc be expressed with one SCG. Any-
how, Baget invented in [Bag99] SCGs where the set of vertices is additionally
divided into hypothesis vertices and conclusion vertices. Moreover,
frontier-vertices are those hypothesis vertices having a conclusion-vertex
as neighbour. Now, if such a rule-graph GR is given, and an graph G such that
the hypothesis-part of GR projects to G. then the conclusion-part of GR can
be added to G, where the frontier-vertices of the conclusion are merged with
the corresponding vertices in the projection of the hypothesis. With this idea,
a knowledge base of SCGs can contain not only facts stated by graphs, but
if-then-rules as well (but as projection is involved, this approach still relies on
the normalization of some graphs). Baget’s idea can even be extended. For
example, positive and negative constraints can be expressed with similarly
augmented SCGs. This leads to a framework called Constrained Derivation
Model [Mug00, BM02]. Within this model, already SCGs become a quite
powerful knowledge representation language.5

Standard Models Standard models as a means for reasoning with CGs
have been introduced by Prediger in [Pre98a, Pre98b]. In [Pre98b], she assigns
to each non-existential SCG G without coreference links a standard model
MG, which is a formal context (OG, AG, IG) with an additional mapping λG

which maps n-ary relation names to n-ary relations over O, and she proves

G1 |= G2 iff G2 is valid in MG1 (1.2)

G1 |= G2 iff IG1 ⊇ IG2 and λG1
R (R) ⊇ λG2

R (R) for all R ∈ R (1.3)

The so-called relational contexts of [Pre98b] are in [Pre98a] replaced by
power context families. For existential SCGs with coreference links, Predi-
ger proves in [Pre98a] the direction “⇒” of (1.2), but does not provide a
counterpart of (1.3).

In [Dau03a] a translation into standard models is provided as well. It is
proven that G1 |= G2 if and only if MG1 entails MG2 . The entailment
betweenMG1 andMG2 is expressed via the existence of a meaning-preserving
mapping from MG2 to MG1 , which is a sort of projection between models.
Now, even in the existential case (with a slightly higher expressiveness of
[Dau03a] compared to [Pre98a]), we have in [Dau03a] results which correspond
to (1.2) and (1.3). So reasoning with SCGs fully carries over to reasoning with
models. Consequently, Dau provides moreover a sound and complete set of
four rules (removing an element, doubling an element, exchanging attributes,
restricting the incidence relation) for entailment between models.

5Besides the already mentioned contributions, the papers show that finding a projection
between SCGs is equivalent to the problem to the conjunctive-query containment known
from relational databases, and the constraint-satisfaction-problem, thus linking reasoning
with SCGs to other formalisms, and it is argued for CGs instead of formulas both from a
knowledge modelling and a computational point of view.
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Other approaches Based on the PhD-thesis of Salvat, approaches with
resolution-style calculi (with implication as sole logical connective) are pre-
sented in [MS96, BS06]. Tappe investigates in [Tap00a, Tap00b] SCGs where
the generic marker –which represents existential quantification– is replaced
by the universal quantifier ∀. Tappe provides a contextual semantics and a
sound and complete calculus.

1.5.2 Nested Conceptual Graphs

In contrast to SCGs, there does not exist a generally agreed upon seman-
tics for nested CGs. Instead, different approaches exist. Some of them are
presented in this section.

One critics given in Section 1.3 for Sowa’s handling of nesting in his defini-
tion of the Φ-operator was his use of formulas as arguments in a predicate, as
this goes beyond FOL. Preller et al [PMC98] have used this approach to de-
fine a non-classical logics with ‘nested’ formulas, which is similar to the logic
of contexts of [McC93]. Then they define a Gentzen-style sequent formal sys-
tem with nested formulas and prove the soundness and completeness of this
system with respect to the projection in simple and nested graph models.

A different approach has been taken by Simonet in [Sim98, CMS98]. She
inductively defines a nested CG by assigning to each concept vertex v an addi-
tional argument Desc(v), where Desc(v) is either the blank graph or a nested
SCG. Then she provides a new Φ-operator for nested CGs by adding to each
predicate a further argument called context argument, which denotes the
context. So, n-ary relation names in nested CGs are translated to n+1-ary
relation names in the corresponding FOL-formulas. Finally, she extends the
notion of projection to these graphs. To obtain soundness and completeness
of projection, the target graph has to be in normalform again, but the notion
of normalforms has extended to cover nestings. First of all, each nesting of the
target graph, understood as a SCG, has to be in normalform. Moreover, if v, v′

are coreferent concept vertices, then Desc(v′) must be an exact copy Desc(v),
i.e., Desc(v′) is a copy Desc(v) such that each generic vertex appearing in
Desc(v) is coreferent to its copy in Desc(v′). This is called strongly nor-
mal. Assumed that we two graphs G, H where H is a strongly normal nested
CG, we have a corresponding result to (1.1). The notion of being strongly
normal can be weakened to a notion of inductively defined k-normality, which
is, roughly speaking, the strong normality condition up the a level k of the
depth of nestings. We omit the details due to space limitations. Finally, simi-
lar to her new semantics Ψ for SCGs, she provides a corresponding semantics
Ψ for nested CGs, where projection is sound and complete without any need
for normalizing the target graph.

In [Pre00], which is basically an excerpt of her PhD-thesis [Pre98a], Prediger
elaborates nested CGs similar to her approach to SCG. Her syntax is based
on directed multi-hypergraphs, augmented with a mapping ρ : V → P(V )
which models the nesting of graphs. First of all, she considers only non-
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existential nested CGs. In contrast to her approach to SCGs, she now assigns
a single object name as referent to each vertex. She equips these graphs with
a situation-based contextual semantics, which is now based on triadic power
context families. Again, similar as for SCGs, she is able to assign to each
nested CG a corresponding standard model. Her result (1.2) for SCGs can
be lifted to the nested case, but she does not provide a counterpart for (1.3).
Finally, she provides a set of eight inference rules (double a vertex, delete
an isolated, non-complex vertex, double an edge, delete an edge, exchange a
concept name, exchange a relation name, join vertices with equal references in
the same nesting, copy a sub concept graph into an equally referenced nesting)
that is sound and complete.

1.5.3 Conceptual Graphs with Atomic Negation

Negation in CGs can be expressed on two levels. We can restrict negation
to concept names and relation names only, or where can allow to negate
whole subgraphs. The first kind of negation is called atomic negation and
covered in this section, the second kind of negation is called full negation
and will be covered in the next section. These two levels lead to a significant
difference in the expressiveness of the systems. When atomic negation is added
to SCGs, the resulting system is still decidable, whereas full negation leads to
the equivalence to full FOL, thus undecidability. Anyhow, if negation on the
atomic level is implemented, to some extent it is possible to express disjunctive
information. To provide an example from [Ker01]: Take the formulas f1 :=
P (a) ∧ R(a, b) ∧ R(b, c) ∧ ¬P (c) and f2 := ∃x∃y : P (x) ∧ R(x, y) ∧ ¬P (y).
Then f1 entails f2. To see this, we have to consider two cases: If P (b) holds
in an interpretation, then f2 holds for x := b and y = c, and if ¬P (b) holds
in an interpretation, then f2 holds for x := a and y := b. The conceptual
graph formalism does not allow to explicitely express this kind of disjunctive
information. The two approaches we present in this section have to cope with
this problem, caused by the law of the excluded middle.

Kerdiles considers in [Ker01] the negation of relation names only. Syntac-
tically, there are two approaches to implement atomic negation. It is either
possible to augment a given vocabulary V by adding for each relation name
R ∈ R a new relation name R− to the vocabulary (which of course denotes
the negation of R), or we can augment a SCG G := (V,E, ν, κ, ρ) with an
additional function sign : E → {+,−}, which divides the set of edges into
positive and negative edges. These graphs are called polarized. Obviously,
both approaches work equally well and can mutually transformed into each
other, which is even formally proven by Kerdiles in [Ker01]. Kerdiles extends
the projections of SCGs to SCGs with atomic negation: In addition to the
usual constraints, projection has to respect sign as well. As usual, the target
graph must be normalized. Besides this requirement, an additional constraint
is put on the source graph: It has to be discriminated. This basically means
that the graph is the juxtaposition of two graphs, where one graphs contains
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only positive, and the other graph only negative relation edges. Not every
SCG with atomic negation can be converted into an equivalent graph which
is discriminated, thus Kerdiles considers only the fragment of graphs where
this is possible. He then shows that for two SCGs with atomic negation G, H
where G is in normal form and H is discriminated, that G |= H holds iff there
exists a projection from H to G.

The approach of Kerdiles has be extended in [LM06, ML07]. Similar to
Kerdiles, Mugnier and Leclère consider polarized CGs, where only relation
names can be negated (but as they argue, concept names can be replaced by
unary relation names, so this does not lead to a loss of expressiveness). They
consider three different logical frameworks for interpreting atomic negation:
The framework where they rely on the closed world assumption CWA, the
framework of classical logic (particularly, here the open world assumption
OWA is employed), and the framework of intuitionistic logic (again based
on OWA). For the framework of CWA, to check whether a polarized CG H
projects to a polarized CG G can be reduced to check whether the positive
part of H projects (in the classical understanding) to some sort of completition
of G. For the framework of intuitionistic logic, they argue that projection
precisely captures the underlying intuition of projection (recall that the law
of excluded middle, which causes the problem we mentioned at the beginning
of this section, does not hold in intuitionistic logic). Finally, for checking
whether a polarized CG H projects to a polarized CG G in the classical logic
setting, on has to check whether H projects to –maybe exponentially many–
completitions of G. The first part of [LM06] elaborates this in detail for
polarized CGs without coreference links. In the second part, coreference is
added to polarized CGs by means of special edges. As identity is a relation
which can be negated, they add a second kind of special edges which are used
to express non-identity as well. Assuming that the unique name assumption
hold, they then show that their results can be lifted to polarized graphs with
identity and non-identity.

Klinger takes in [Kli01, Kli02, Kli05] a different approach. First of all, on
the syntactical level, she assigns to each concept vertex two kinds of referents:
a positive and a negative one (similar to Prediger, she allows sets of object
names instead of single object names). To illustrate this, a simple example is
provided below.

likes1 2Yoyox MAN:DOG: Tim y

As it can be seen, Klinger uses variables instead of the generic marker for
existential quantification. The referents on the lefthand side of the bar are
the positive referents, the referents on the righthand side of the bar are the
negative referents. The intuitive meaning of this graph is ‘there exists a dog
(namely x), Yoyo is not a dog, Tim is a man, there exists something (namely
y) which is not a man, x likes Tim, and Yoyo does not like y.
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First of all, Klinger equips her graphs with a contextual semantics. If
one demands that for a formal concept (A,B), the extent of the negation of
(A,B) is the set-theoretic complement G\A of A, then this set does not have
to be the extent of a concept itself. For this reason, Klinger does not assign
only formal concepts to concepts and relation names. Instead, in her papers
[Kli01, Kli02], she considers contextual interpretations where semi -concepts
of the contextual interpretations are assigned to the names of the vocabulary.
In her PhD-thesis [Kli05], she assigns the more general proto-concepts to the
names (each semiconcept is a protoconcept; see Chapter ??).

In [Kli01], Klinger introduces so-called simple semiconcept graphs, which
provide no means of quantification. Nonetheless, coreference can be expressed
by relation edges labelled with the name ‘=’. She provides the syntax and
semantics of simple semiconcept graphs, and she assigns a standard model to
each of them. [Kli02] is the extension of [Kli01] to the existential case (where
existential quantification is expressed with variables, not with the generic
marker). Besides the definitions and their discussion, no results are presented
in [Kli02] and [Kli01].

Here full elaboration of CGs with atomic negation can be found in her PhD-
thesis [Kli05], where so-called (non-existential and existential) protoconcept
graphs are fully elaborated. A first main concern of her is the satisfiability of
graphs. As it is possible to express self-contradictory proposition with atomic
negation, Klinger provides criteria when a protoconcept is satisfiable. For
non-existential protoconcept graphs, standard models are introduced, and a
result similar to (1.2) for these graphs is proven. The notion of standard
models is dismissed for the existential case. Both for non-existential and
existential protoconcept graphs, a sound and complete calculus is provided.
For the non-existential case, it consists of 14 rules, that are besides one rule
(iterating a subgraph) simple transformation rules. For the existential case,
exactly these rules are adopted, and an additional rule, the “existential rule”,
is added. Unfortunately, this rule is quite complex: Its definition takes nearly
three pages, and it is therefore hard to understand. As Klinger writes, the
rule is needed in order to obtain the completeness for the existential case, but
it ‘certainly is not a very practical one’.

1.5.4 Conceptual Graphs with Full Negation

After discussing CGs with atomic negation, Kerdiles considers in [Ker01]
full negation as well. He inductively defines CGs with negation, where each
negated subgraph is a simple graph in normal form. coreference is still em-
ployed as an equivalence relation on the generic vertices, with some syntactical
restrictions. Kerdiles did not want to use coreference edges as representation
of identity, but simply to mark the multiple occurrences of a variable in tradi-
tional textual languages. So if one wants to express identity (or its negation),
this should be in his system done by using additional relation edges labelled
with ‘=’ (personal communication). For this system of CGs with (a slightly
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restricted) full negation, Kerdiles provides an extensional semantics, a trans-
lation of the graphs to FOL, and a sound and complete tableau algorithm.

A comprehensive approach to add full negation to CGs is provided by Dau
in [Dau00, Dau01, Dau03b]. In [Dau00], Dau argues that to express full nega-
tion to CGs, a new syntactical entity to express negation has to be added, and
he suggests to use the negation ovals of Peirce’s existential graphs (which are
called ‘cuts’ by Peirce for this purpose (recall the discussion of Section 1.3.3
– which is in fact taken from [Dau03b]– that negation should not be imple-
mented as meta-level operation, which is syntactically expressed by means of
special contexts). Moreover, he argues that for CGs with full negation, it is
convenient to express identity by relation edges labelled with ‘=’ (between
arbitrary concept vertices). The resulting graphs are called concept graph
with cuts (CGwCs). In the diagrammatic representation of CGwCs, to dis-
tinguish negation ovals from relation ovals, they are drawn bold. In contrast
to the use of contexts, there is no reason to draw negation ovals only around
‘complete’ subgraphs. Below, two CGwCs are depicted. The left one is the
CGwC-counterpart of Sowa’s CG provided in Section 1.2.3, the right one is a
CGwC expressing ‘there are at least two things’.

* *FARMER: own DONKEY:

beat

: * : *

Dau’s approach is in [Dau00] carried out for non-existential CGwCs. A con-
textual semantics for CGwCs is provided, and a sound and complete calculus
with twelve rules, based on Peirce’s calculus for existential graphs, is given.

The full approach to both non-existential and existential CGwCs can be
found in [Dau03b], [Dau01] is a rough overview over [Dau03b] without proofs.
For CGwCs, [Dau03b] provides the syntax, both an extensional and contextual
semantics, including mappings between these semantics, a sound and complete
calculus, and translations from CGwCs to FOL (the Φ-operator) and vice
versa, from FOL to CGwCs (called Ψ). The rules of the calculus are erasure,
insertion, iteration, deiteration, double cuts, generalization, specialization,
isomorphism, exchanging references, merging two vertices, splitting a vertex,
>-erasure, >-insertion, identity-erasure, identity-insertion. The first five rules
correspond to Peirce’s rules for existential graphs. The rules generalization
and specialization capture the order of the names. The rules >-erasure and
>-insertion capture the special properties of the concept name >. The rules
exchanging references, identity-erasure, and identity-insertion capture some
special properties of the relation name =, and the rules merging two vertices,
splitting a vertex rely on both the properties of > and =.
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1.6 Works not Cited

Conceptual graphs are a still a field of active research. This can be easily
seen from this chapter, which basically cites research papers and several PhD-
thesises. This section mentions some more important research works.

Both the Darmstadt-school and the Montpellier-school have generated a
number of important PhD-thesises. The latter have not been cited yet, as they
are due to the regulations in France published in french. Nonetheless, this sec-
tion will give an rough overview over the (concerning the aim of this chapter)
the most important ones. First of all, the Montpellier-school developped a
CG-based reasoner called ‘CoGITo’. The first version has been designed and
implemented in C++ by Ollivier Haemmerle in his thesis ‘Une plate-forme de
développement de logiciels sur les graphes conceptuels’ (1995).6 He studied
also the relationships between CGs and relational databases and developed a
question/answering system. The thesis of Michel Leclère ‘Les connaissances
du niveau terminologique du modéle des graphes conceptuels: construction
et exploitation’ (1995) focuses on type definitions, i.e., contraction, expansion
and classification of simple conceptual graphs with defined types. The thesis
of Eric Salvat ‘Raisonner avec des opérations de graphes: graphes conceptuels
et règles de d’inférence’ (1997) is devoted to the processing of ‘if-then’ rules.
He defined and implemented in CoGITo sound and complete graph-based for-
ward and backward chaining mechanisms for ‘if SCG then SCG’ rules. Finally,
the thesis of Jean-Francois Baget ‘Représenter des connaissanceset raisonner
avec des hypergraphes: de la projection à la dérivation sous constraintes’
(2001) contains a lot of results. For example, he defined algorithms for pro-
jection based on constraint processing techniques, and he defined a family of
formalisms based on SCGs, rules and constraints and studied their complexity.

We already mentioned a pioneering paper of Wermelinger. To the best of
my knowledge, he dedicated his MSc thesis ‘Teoria Básica das Estruturas Con-
ceptuais’ (‘Basic Conceptual Structures Theory’, New University of Lisbon,
Portugal, 1995) to a formalization of conceptual graphs. But unfortunately,
the thesis is published in Portugese.

Heaton’s english thesis ‘Goal Driven Theorem Proving Using Conceptual
Graphs and Peirce Logic’ (Loughborough University of Technology, UK, 1994)
focuses on conceptual graphs and existential graphs. He augments CG with
constructs of Peirce’s existential graphs, including Peirce’s negation ovals.
See http://myweb.tiscali.co.uk/openworld/index.html for an treatise summa-
rizing Heaton’s research on conceptual graphs so far.

Finally, I’d like to mention that in [BMT98, BMT99, Ker01], the decidable,
so-called ‘guarded fragment’ of conceptual graphs is investigated.

6CoGITo has later been extended to typed nested CGs and be renamed CogiTaNT. See
http://cogitant.sourceforge.net/
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10e conférence), RSTI - L’objet (numéro spécial), 10(2-3):203–216,
2004.

[Bag05] Jean-François Baget. Rdf entailment as a graph homomorphism.
In Yolanda Gil, Enrico Motta, V. Richard Benjamins, and Mark A.
Musen, editors, International Semantic Web Conference, volume
3729 of Lecture Notes in Computer Science, pages 82–96. Springer,
Berlin – Heidelberg – New York, 2005.

[BM02] J.-F. Baget and M.-L. Mugnier. Extensions of Simple Conceptual
Graphs: The Complexity of Rules and Constraints. JAIR, 16:425–
465, 2002.

[BMT98] F. Baader, R. Molitor, and S. Tobies. The guarded fragment of con-
ceptual graphs. RWTH LTCS-Report. See also [BMT99]. Available
at: http://lat.inf.tu-dresden.de, 1998.

[BMT99] F. Baader, R. Molitor, and S. Tobies. Tractable and decidable
fragments of conceptual graphs. In Tepfenhart and Cyre [TC99],
pages 480–493. Excerpt of [BMT98].

[BS06] J.-F. Baget and E. Salvat. Rule dependencies in backward chaining
of conceptual graph rules. In Øhrstrøm et al. [ØSH06], pages 102–
116.

[CM92] M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental
Notions. Revue d’Intelligence Artificielle, 6(4):365–406, 1992.

[CM95] M. Chein and M.-L. Mugnier. Conceptual graphs are also graphs.
Technical report, LIRMM, Université Montpellier II, 1995. Rapport
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