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Abstract. In knowledge representation and reasoning systems, diagrams
have many practical applications and are used in numerous settings. In-
deed, it is widely accepted that diagrams are a valuable aid to intuition
and help to convey ideas and information in a clear way. On the other
side, logicians have viewed diagrams as informal tools, but which can-
not be used in the manner of formal argumentation. Instead, logicians
focused on symbolic representations of logics. Recently, this perception
was overturned in the mid 1990s, first with seminal work by Shin on an
extended version of Venn diagrams. Since then, certainly a growth in the
research field of formal reasoning with diagrams can be witnessed. This
paper discusses the evolution of formal diagrammatic logics, focusing on
those systems which are based on Euler and Venn-Peirce diagrams, and
Peirces existential graphs. Also discussed are some challenges faced in
the area, some of which are specifically related to diagrams.

1 Introduction

Formal Concept Analysis (FCA) is a mathematical theory applied successfully in
a wide range. The impact and success of FCA and the large number of applica-
tions in the real world cannot be explained solely with the mathematical results
and the mathematical power of FCA. The driving force behind FCA lies in the
understanding of mathematics as a science which encompasses the philosophical
basis and the social consequences of this discipline as well, and a main goal of
FCA from its very beginning has been the support of rational communication
and the representation and processing of knowledge. Lattice theory is reworked
in order to integrate and to rationalize origins, connections to and interpretations
in the real world. As Wille says in [78]:

The aim is to reach a structured theory which unfolds the formal thoughts
according to meaningful interpretations allowing a broad communication
and critical discussion of the content.

Wille, 1996

Thus the results of lattice theory had in FCA to be presented in a way which
makes them understandable, learnable, available and criticizable, particularly for
non-mathematicians. One means to achieve this goal is the diagrammatic repre-
sentations in form of their Hasse diagrams. FCA, being is a mathematical theory



formalizing the philosophical notion of concepts, has been later extended to con-

textual logic in order to revitalize the traditional philosophical understanding
of logic which is based the the doctrines of concepts, judgments and conclu-
sions. Again, an important aspect of contextual logic is that its core notions, i.e.
both judgments and conclusions, can be diagrammatically represented (for this
purpose, Sowa’s conceptual graphs [70] are utilized).

It is widely accepted that diagrams play an important role for representing
information in accessible and intuitive ways. In mathematics, however, there
does still exist a long-standing prejudice against non-symbolic representation,
particularly in mathematical logic. Without doubt diagrams are often used in
mathematical reasoning, but usually only as illustrations or thought aids. Dia-
grams, many mathematicians say, are not rigorous enough to be used in a proof,
or may even mislead us in a proof. Thus diagrams have been excluded from
formal proof techniques and were considered only as a heuristic aid.

Interestingly, most of the ancient systems which can be considered as prede-
cessors of formal logic are diagrammatic systems. We name Euler circles, Venn
diagrams and Venn-Peirce diagrams, Frege’s Begriffsschrift and Peirce’s existen-
tial graphs. It was not until the end of the 19th century that symbolic notations
took over in mathematical logic.

After more than a century of an absolute dominance of symbolic notations
for logic, the last two decades show an increasing interest in formal elaborations
of diagrammatic reasoning systems (DRSs), that is, formal logic systems with
a precise syntax, semantics, and (diagrammatic) reasoning facilities. In this pa-
per, we investigate this advent of diagrammatic reasoning systems from various
perspectives. In order to do so and to motivate the use of DRSs, we first discuss
in Sec. 2 possible applications of DRSs in software engineering and knowledge
representation. An introduction into the Euler-Venn-Peirce family of diagrams
as well as into existential graphs is provided in Sec. 3. Seminal work in the field
of DRSs which present and elaborate these historical system is presented in sec-
tion 4. Although that this seminal work laid the path towards a mathematically
precise development of DRSs, it can be argued that they still do not fulfill the
requirements of a rigorous mathematical system. Sec. 5 presents methodologies
for developing DRSs in a precise manner. Contemporary systems which follow
these methodologies are then presented in Sec. 6. Finally, we conclude with a
discussion of the area.

2 Examples of Application Areas

In order to motivate the development of DRSs, we present in this section two
different application areas of DRSs in the fields of software engineering and
knowledge representation in the Semantic Web.

2.1 Software Engineering

In Software Engineering, we observe an increasing demand and development of
diagrammatic languages which are used for describing, specifying and communi-



cating a wide range of modeling aspects. In software engineering, different kinds
of stakeholders are involved in the modeling process. Besides IT professionals
like programmers and developers, this includes people like managers and cus-
tomers, which often do not have a dedicated technical expertise. As there is
a need of software specifications being accessible to all stakeholders, symbolic
languages and formalizations are not suited for modeling purposes, and vari-
ous diagrammatic languages like UML (unified modeling language)1 or BPMN
(business process modeling notation)2 have been developed.
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Fig. 1. A UML class diagram and a UML state chart

UML is in fact a whole suite of (mostly) diagrammatic notations, including
class diagrams, state charts and various others. In Fig. 1, a UML class diagram
and a UML state chart are depicted. Both of them refer to a scenario for describ-
ing a library lending system. The class diagram expresses relationship between
the classes Person, Library and Book : persons can borrow books, persons can
join libraries, and libraries have collection of books. Books can be in two dif-
ferent states, namely onShelf or onLoan, as it is expressed by the state chart.
Initially (expressed by the bold dot and arrow), books are on the shelf. If a book
is borrowed, its state changes to being on loan, and vice versa, a book on loan
becomes being on shelf if it is returned.

There does exist a part of the UML which is non-diagrammatic: This is
the Object Constraint Language (OCL) which has been developed to describe
formal constraints on software models. As a very simple example of a constraint
we might wish to enforce on a library lending system is that people can only
borrow books that are in the collections of libraries they have joined. Using the
OCL, this is achieved as follows:

Context Person inv:((self.joined.collection–>asSet)–>includesAll(self.canBorrow))

Being a symbolic notation, OCL does not follow the general diagrammatic ap-
proach of UML and is for this reason probably not as easily understandable
diagrammatic parts of UML. Thus it is reasonable to develop a diagrammatic
variant of OCL. A groundbreaking approach towards this aim has been un-
dertaken by Kent, who introduced in [41] the class of constraint diagrams. An

1 http://www.uml.org
2 http://www.bpmn.org



example for such a diagram is provided in Fig. 2. This diagrams expresses the
same constraint as its symbolic counterpart we have just given, but compared
to the symbolic notation, the diagram fits better in the general visual theme of
OCL.
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Fig. 2. A constraint diagram

Mainly driven by the Visual Modeling Group (VMG) in Brighton, UK3,
constraint diagrams are developed as a formal DRS, including a formal syntax,
FOL-based, semantics, and diagrammatic reasoning facilities.

2.2 Knowledge Representation and the Semantic Web

Is has long been argued that diagrams are particularly useful for knowledge
representation systems [56, 28, 48]. In this section, we focus on knowledge repre-
sentation within the Semantic Web, particularly on RDF(S) and OWL.

The underlying layer for knowledge representation within the Semantic Web
is the Resource Description Framework (RDF) and its extension RDF Schema
(RDFS). The essential idea of RDF is that each atomic piece of information can
be represented as a triple (subject predicate object), and an RDF Knowl-
edge Base is a set of RDF triples. There are different representations of RDF
KBs. First of all, there exists a machine processable XML serialization of RDF.
Secondly, we have the notion of an RDF KB as a set of RDF triples. Thirdly,
we can represent an RDF KB by means of an labeled graph, where a triple (s

p o) is modeled by two vertices labeled with s and o, respectively, and which
are connected by an edge labeled with o.

Tim-Berners Lee, inventor of the WWW and the driving force behind the
semantic web, recently reformulated his vision of the Semantic Web as a “Giant
Global Graph”.4 This understanding lead to a significant change in the architec-
ture of the WWW: Now the W3C considers RDF graphs as basic data structures
for representing information.5 This paradigmatic shift clearly hints to the im-
portance of graph-based logics within the Semantic Web framework.

A more sophisticated level in the W3C stack (the hierarchy of W3C descrip-
tion languages) is the level of ontologies. The W3C recommendation is OWL
(Web Ontology Language), which has recently been extended to OWL 2.0. The

3 http://www.cmis.brighton.ac.uk/research/vmg
4 http://dig.csail.mit.edu/breadcrumbs/node/215 created 2007/11
5 http://www.w3.org/Consortium/technology, created 2008/01



formal background of OWL and OWL 2.0 is the family of Description Log-
ics (DLs, see [1]). DLs are a common family of knowledge representation for-
malisms tailored to express knowledge about concepts and concept hierarchies.
They include sound and complete decision procedures for reasoning about such
knowledge.

The formal notation of DLs has the flavor of a variable-free first order logic.
In fact, DLs correspond to (decidable) fragments of first order logic, and they
have a well-defined, formal syntax, a semantics in the form of Tarski-style mod-
els, and sound and complete calculi (e.g. based on Tableaux-algorithms). It is
often emphasized that DLs offer, in contrast to other knowledge representation
languages, sound, complete and (empirically) practically useful reasoning ser-
vices.

The fact that the notation of DLs is variable-free makes them easier to com-
prehend than the common first order logic formulas which include variables.
Nonetheless, for untrained users, the symbolic notation of DLs can be hard to
learn and comprehend. A main alternative to the symbolic notation is the de-
velopment of a diagrammatic representation of DLs. In [55], the introduction to
the Description Logic Handbook, Nardi and Brachman write a “major alternative
for increasing the usability of Description Logics as a modeling language” is to
“implement interfaces where the user can specify the representation structures
through graphical operations.”

For RDF, mathematical elaborations based on graph theory have been de-
veloped. They include Tarski-style semantics as well as sound and complete
calculi, latter either based on “projections” (see [4, 5]) or on diagrammatic rules
(see [19]). That is, RDF is developed as a fully-fledged diagrammatic logic. A
first attempt at a diagrammatic representation for DL is can be found in [28],
where Gaines elaborates a graph-based representation for the textual DL CLAS-
SIC. More recently, the focus has shifted from the development of proprietary
diagrammatic representations to representations within the framework of UML
(Unified Modeling Language). In 2003, the Object Management Group requested
a metamodel for the purpose of defining ontologies. Following this proposal, [7]
provides a UML-based, diagrammatic representation for OWL DL. In these ap-
proaches, the focus is on a graphical representation of DL, however, as often
emphasized, reasoning is seen as a distinguishing feature of DL and such reason-
ing is not supported diagrammatically by that treatment. A first step towards
developing DLs as fully fledged diagrammatic logics, based on Peirce’s Existen-
tial Graphs, has been carried out for the DL ALC (the smallest propositionally
closed DL) in [27]. Research is in progress to extend this approach to more
expressive DLs.

3 Historical Systems

In this section, we shortly discuss the historical background of DRSs, namely
Euler circles (a.k.a. Euler diagrams) [24], Venn diagrams [77], Venn-Peirce dia-
grams [59] and Peirce’s existential graphs [33, 60, 31].



An Euler diagram is a finite collection of closed curves drawn in the plane.
For example, in Fig 3, d1 is an Euler diagram which expresses that nothing is
both a car and a van. Venn diagrams differ from Euler circles in the respect that
the curves are drawn in a way that all possible set combinations are shown in the
diagram, and shadings are used to show that certain set combinations must be
empty. So the Venn diagram d2 expresses the same information as d1. Finally, in
Venn-Peirce diagrams, o-signs are utilized to assert the emptiness of a set. More
importantly, Peirce also introduced ⊗-signs which denote elements so that –in
contrast to Euler Circles or Venn-diagrams– now the non-emptiness of sets can
be explicitely expressed. These signs can be assembled with lines to sequences,
and the lines are read in a disjunctive manner. If we consider the diagram d3,
the outer spider asserts that the set cars ∩ V ans is non-empty (denoted by the
two ⊗-signs) or that the set Cars ∩ V ans ∩ Bikes is empty (denoted by the
o-sign). So the d3 is a diagrammatic representation of the formula

(Cars ∩ V ans 6= ∅ ∨ Cars ∩ V ans ∩ Bikes = ∅) ∧

(Cars ∩ V ans 6= ∅ ∨ Cars ∩ V ans ∩ Bikes = ∅).

which expresses that either Cars ∩ V ans = ∅ or Cars ∩ V ans 6= ∅.

VansCars

Bikes

d1 d3d2

Cars

Bikes

Vans Cars

Bikes

Vans

Fig. 3. An Euler diagram, a Venn diagram, and a Venn-Peirce diagram

Existential graphs (existential graphs) are a different diagrammatic system
with a focus on representing and reasoning with relations. The system of ex-
istential graphs is divided into three parts: Alpha, Beta and Gamma, which
presuppose and are built upon each other. Alpha corresponds to propositional
logic, Beta corresponds to first order logic, and Gamma encompasses features of
higher order logic, including modal logic, self-reference and more. In contrast to
Alpha and Beta, Gamma was never finished by Peirce, and even now, only frag-
ments of Gamma (mainly the modal logic part) are elaborated to contemporary
mathematical standards. In this paper, only Alpha and Beta are introduced.

The existential graphs of Alpha consist only of two different syntactical en-
tities: (atomic) propositions, and so-called cuts which are represented by fine-
drawn, closed, doublepoint-free curves. Essentially, writing different graphs on
the plane expresses their conjunction, and enclosing a graph by a cut denotes
its negation. Below, two examples of Alpha graphs are given. In the left graph,
the propositions ‘it rains’, ‘it is stormy’ and ‘it is cold‘ are written side by side,



thus the graph means ‘it rains and it is stormy and it is cold‘. The right graph
has the meaning ‘it is not true that it rains and it is stormy and that it is not
cold’, i.e. ‘if it rains and if its stormy, then it is cold’.

it rains

it is stormy

it is cold

it is cold
it is stormy

it rains

Fig. 4. Two Alpha graphs

If we go from the Alpha part of existential graphs to the Beta part, predicate
names of arbitrary arity may be used, and a new sign, the line of identity, is
introduced. Lines of identity are used to denote both the existence of objects and
the identity between objects. They can be connected to networks. The meaning
of the Beta graphs in Fig. 5 are ‘there exists a male, human african’, ‘there exists
a man who will not die’, and ‘it is not true that there is a pet cat such that it
is not true that it is not lonely and owned by somebody’, i.e., ‘every pet cat is
owned by someone and is not lonely’.

male

African

human will dieman

cat
pet

ownedby

lonely

21

Fig. 5. Three Beta graphs

4 Seminal Work on Historical Systems

In this section, we provide an overview on important seminal work which aims
at elaborating the historical systems of the last section.

4.1 Shin’s Extended Venn Diagrams

Certainly a landmark work on diagrammatic reasoning is Shin’s elaboration of
Venn-Peirce-diagrams in [67]. In fact, the main point of [67] is to argue that
developing a diagrammatic reasoning system which possesses the rigor of formal
mathematical logic is possible; the elaboration of Venn-Peirce-diagrams can be
seen as a proof of concept for her approach.

We shorty discuss Shin’s so called Venn-II system. Essentially, Venn-II is
based on Venn diagrams where Peirce’s ⊗-sequences are added and where dia-
grams can be taken in disjunction. The Venn-II diagram in Fig. 6 expresses the



same as the Venn-Peirce diagram d3 in Fig. 3; the line connecting the two boxes
represents disjunction (similar to the lines in ⊗-sequences).

V a n sC a r s

B i k e s

V a n sC a r s

B i k e s

Fig. 6. A Venn-II diagram

The semantics are formalized in much the same way as traditional approaches.
Shin defines set assignments which are analogous to structures and then specifies
conditions under which a set assignment satisfies a diagram; see [67] for more
details. In [67], ten reasoning rules are defined for Venn-II and shown to form a
sound and complete set.

Shin shows that Venn-II is equivalent in expressive power to Monadic First
Order Logic (MFOL) without equality. This is a noteworthy result: Though it is
straightforward to convert Venn-II diagrams into MFOL sentences; the converse
requires some effort as there is not a natural mapping from arbitrary MFOL
sentences to Venn-II diagrams.

Shin claims that her system is formally rigorous, but a closer observation
reveals that this claim cannot be sustained. The main reason is that Shin defined
the syntax of Venn-II at the concrete (drawn) diagram level. This resulted in a
lack of mathematical preciseness in her work, leading to unclear definitions and
errors in proofs (see [23]). Of course, this lack of rigor should not detract from
the importance of Shin’s work because she laid the essential foundations for the
acceptance of diagrams as formal tools.

4.2 Seminal Work on Existential Graphs

The main treatises on existential graphs are probably the books of Zeman [80],
Roberts [65] and Shin [68]). Each of this books focuses on different aspects of
existential graphs.

Probably the most prominent book on existential graphs is D. Robert’s ‘The
Existential Graphs of Charles S. Peirce’. This book offers the most comprehensive
description of the whole system of existential graphs –Alpha, Beta and Gamma–
and its genesis. Particularly, Gamma is described to a large degree. Robert’s
treatise is definitely an outstanding work. However, from a mathematical point of
view, this book is clearly insufficient. Roberts does not provide any (technical or
mathematical) definitions for existential graphs, neither their syntax, semantic,
nor inference rules, and he relies solely on the graphical representations of graphs.

In contrast to Roberts, J. J. Zeman’s book ‘The Graphical Logic of C. S.
Peirce’ is, from a mathematical point of view, the best of the books which are
here discussed. Zeman provides a mathematical elaboration of Alpha, Beta, and



the part Gamma which extend Beta by adding the broken cut. Whereas Roberts
solely relies on the graphical representations of graphs, Zeman defines existen-
tial graphs inductively as abstract structures, i.e. in fact as sequences of signs.
Like in the other treatises, Zeman does not provide a mathematical, extensional
semantics for Peirce’s graphs. Instead of that, he defines mappings between the
systems Alpha, Beta, Gamma and appropriate systems of propositional, first
order, and modal logic. These translations from graphs to symbolic are correct,
but they are arguably very technical and clumsy. Even quite simple existential
graphs are translated to rather complex first order logic-formulas.

Sun Joo Shin’s book ‘The Iconic Logic of Peirce’s Graphs’ discusses only
Alpha and Beta. Her interest in existential graphs is philosophically driven,
and she uses existential graphs as a case study for her goal to provide a for-
mal approach to diagrammatic reasoning. As the title of her book suggests, she
focuses on the diagrammatic aspects, particularly the iconicity, of existential
graphs. She compares symbolic and diagrammatic approaches to mathemati-
cal logic and works out that the long-standing prejudice against non-symbolic

representation in logic, mathematics, and computer science is due to the fact
that diagrammatic systems are evaluated in terms of symbolic systems. Then,
based on her arguments, she reconsiders Alpha and Beta from iconic aspects
and rewrites the reading algorithms, that is, the translations from graphs to
symbolic logic, and the transformation rules in order to improve their iconicity
and naturalness. mathematical preciseness. Similar to her approach for Venn di-
agrams, Shin only uses the graphical representation of existential graphs (which
is quite surprising, as Shin elaborates carefully the semiotic aspects of existential
graphs), which again results in a lack of mathematical preciseness. Particularly,
Shin’s definitions (and later on, theorems and proofs) cannot be considered to
be mathematical. This leads to a mistake in her reading algorithm, and –even
worse– some of her newly implemented transformation rules are not sound [18].
Finally, Shin does not provide an extensional semantics for Peirce’s graphs: her
reading algorithms are translations to symbolic logic, thus translations from one
formal system to another.

5 Methodologies for Formalizing Diagrams

In the previous sections on seminal work on the historical systems, we already
addressed that from a mathematical point of view, the elaborations of the his-
torical systems are not sufficient due to a lack of formal preciseness. The formal
shortcomings of the seminal works are mainly due to the fact that a general
methodology for a formal elaboration of diagrammatic logics was missing. To
put it more precisely: A thorough scrutiny on how to deal with diagrams (in-
stead of symbolic notations like formulas) was not carried out.

In order to elaborate diagrammatic logics in a solid formal manner, it is
crucial to note that we deal with two different entities: A mathematical structure
and its diagrammatic representation. In any diagrammatic representation of a
mathematical structure, we have to disregard certain graphical properties of the



diagrams, while other properties are important. This shall be exemplified with
the following diagrams of Alpha existential graphs in Fig. 7.

CBA C B
A

C
B

A

Fig. 7. Three diagrams of one Alpha graph

The shape of the cuts (negation ovals) or the place of propositional variables
and other cuts in the area of a given cut has no significance, thus all diagrams
convey the same meaning. They can be read as ‘it is not true that A and B, but
not C hold’, i.e., ‘A and B imply C’. Peirce did not understand EGs as graphical
entities at all. For him, the three diagrams are not different graphs with the same
meaning, but different representations, i.e., diagrams, of the same graph. This
is a crucial distinction, which obviously corresponds to the distinction between
types (graphs) and tokens (graph replicas), as it is known from philosophy. The
type-token issue if far from being settled; nonetheless, this important distinc-
tion helps us to draw the following conclusion: In any elaboration of a DRS, the
diagrams should not be defined as graphical entities. Instead, we need a defi-
nition of mathematical structures which encompass exactly the facts which are
represented in the diagrams, and the diagrams should be understood as (mere)
representations of these structures.

Two thorough discussions on the type-token-issue for DRSs can be found in
[34, 17]. Both papers argue that it is essential to provide mathematical defini-
tions for the type-level (called abstract syntax in [34]). For the token-level (called
concrete syntax in [34]), the papers come to different conclusions: Whereas [34]
argues that the token-level as well as the relationship between these two levels
has to be formally captured as well, [17] argues that this is in fact not needed.
For the purpose of this paper, this difference has no significance. The crucial
point here is the following: In symbolic approaches to formal logic, once we have
chosen a formula –i.e. a sequence of signs– is chosen, the representation of the
formula is uniquely given. So in symbolic logic, we have only one level of repre-
sentation to deal with. In graph-based DRSs on the other hand, a given graph
can have very different diagrammatic representations. For example, in Fig. 7 we
have different representations of the same Alpha graph. So, for representing in-
formation, symbolic and linear notions of logic have a one layer architecture,
and diagrammatic logic systems have a two layer architecture.

The general advantages of this two layer structure for the pragmatics of
diagrams is already discussed to a large extent [49, 66, 6, 68, 57]. It is usually
argued that the additional diagrammatic layer, often referred to as ‘secondary
notation’, provides the essential means to improve the pragmatics of a repre-
sentation system. As Oberlander writes in [57]: “secondary notation is the very
stuff of graphical pragmatics–meaningful structures which go beyond the plain
semantics of the system.”



6 Contemporary Systems

The last two decades witness the rise of formal diagrammatic reasoning systems
in two respects: First, more expressive diagrammatic reasoning systems have
emerged and, more importantly, are formalized in a mathematical precise man-
ner. Second, for some of these logics, computer programs have been developed
and applied to various settings. This section summarizes some recent advances
in the field.

6.1 Spider and Constraint Diagrams

Spider diagrams (SDs) and constraint diagrams (CDs) are a DRS based on Euler
circles and Venn-Peirce diagrams. They are elaborated as abstract mathematical
structures, including extensional semantics and inference rules. Their develop-
ment is mainly driven by the Visual Modeling Group in Brighton.

Spider Diagrams Spider diagrams combine features of Venn diagrams and the
more user friendly Euler diagrams. They can be thought of as extending Venn-II
diagrams. Various different systems exist today, for example [35, 36, 38, 40, 74].
In Fig.8, two examples of so-called unary SDs are depicted.

BA BA C

Fig. 8. Two spider diagrams

The left diagram contains two existential spiders. Each spider denotes a
uniquely given object (i.e., different spiders necessarily denote different objects).
In contrast to Venn-Peirce diagrams, shading a region does not necessarily mean
the corresponding set is empty. Instead, a region does not contain more elements
than the elements represented by some spiders. So the SDs reads as follows: there
are two sets A and B, the set A − B contains exactly one element, and the set
B contains at least one element. In the right diagram, a third contour represent-
ing a set C is involved. This diagram uses the notions of Euler circles: as the
contour labeled C does not overlap with the A and B-contours, C and A ∪ B
are disjoint6. Moreover, there are three elements u, v and w (represented by the
three spiders) such that u, v ∈ A and w /∈ A − B. Further, due to its shading,
the set A−B must not contain any other elements than u and v, i.e. it contains

6 The usage of disjoint features in Euler circles has a drawback: not all abstract SDs
are drawable (see [75]).



exactly two elements, and A ∩ B must not contain any other elements than w,
i.e., it contains no element or at most one element.

Unary SDs can be propositionally combined with the logical operators ⊓
(‘and’) and ⊔ (‘or’). In Fig. 9 an SD which uses these conjunctors is shown.
It has been shown that SDs are equivalent in expressive power to MFOL with
equality [72]; thus they have a higher expressiveness than Venn-II.

BA BA C
BA

D

Fig. 9. A compound spider diagram

Constraint Diagrams SDs only allow reasoning about sets, namely unary
predicates, and provide no possibility to represent or reason about any sort of
relations. Moreover, as already mentioned, the spiders in SDs are ‘existential
spiders’ as they can be read as existentially quantified objects. Constraint

diagrams are essentially an extension of SDs with universal spiders (quan-
tifiers) and arrows which represent binary relations. A full constraint notation
was introduced by Kent [42] in an informal manner. Since then, several papers
attempt to elaborate a full mathematical treatment of Kent’s vision, including
syntax, semantics, and a sound and complete calculus for constraint diagrams.
For example, in [26], the syntax and semantics of full constraint diagrams is
developed but a sound and complete calculus is elusive. The first ever constraint
reasoning system (i.e., including a sound and complete calculus) was developed
by Stapleton [73] but compared to Kent’s approach it has several limitations.

An example for a constraint diagram was already given in Fig. 2. In the formal
approach to constraint diagrams, we have both existential and universal spiders,
which renders the formalization of the diagrams difficult, as there is no natural
order placed on the quantifiers. This difficulty is overcome by augmenting each
diagram with a reading tree; the formalization of constraint diagrams can be
found in [25]. An example can be seen in Fig. 10. This diagram expresses that
Book, Title and Author are pairwise disjoint, Fiction and NonFiction form a
partition of Book, and finally every book x has a unique name which is its title
and x has at least one main author.
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Fig. 10. A constraint diagram with a reading tree

Applications For Euler diagrams, the Visual Modelling Group has developed
a diagrammatic theorem prover called Edith.7 Edith automates the search for
Euler diagram proofs using a variety of reasoning rule sets and heuristics [71]. For
a given rule set, Edith finds a shortest proof. In Edith, users can create diagrams,
apply rules to write a proof and ask Edith to seek a proof from one diagram to
another. With regard to applications, SDs have been used to detect component
failures in safety critical hardware [12] and (slight variations of them) to represent
non-hierarchical file systems [21] and for viewing clusters which contain concepts
from multiple ontologies [32].

As mentioned in section 2, one area that could benefit from the develop-
ment of diagrammatic logics is software engineering. Constraint diagrams were
designed with this application area in mind and extend the spider diagram lan-
guage. Constraint diagrams have been used in a variety of areas including formal
object oriented specification [37, 44] and a visual semantic web editing environ-
ment [51, 81]. Prototype tools to support their use are available from [64].

6.2 Conceptual Graphs

John Sowa’s conceptual graphs (CGs) are based on Peirce’s existential graphs.
Sowa writes that they are an extension of existential graphs with features adopted

from linguistics and AI. The purpose of the system is to express meaning in a

form that is logically precise, humanly readable, and computationally tractable.

CGs are designed to be used in fields like software specification and modeling,
knowledge representation, natural language generation and information extrac-
tion, and these fields have to cope with problems of implementational, mathemat-
ical, linguistic and even philosophical nature. In CGs, we can diagrammatically
represent various entities and logical constructors, like concepts and relations,
individuals, quantifiers, conjunction, different levels of negations, contexts, etc.

In Fig. 11, three well-known examples of CGs are provided. The graph d1

has the meaning that Yoyo is a cat and Yoyo is on some (unnamed) mat. In d2,
so-called contexts are used. The meaning of this graph it that the person Tom
believes the proposition that the person Mary wants the situation that Mary

7 http://www.cmis.brighton.ac.uk/research/vmg/autoreas.htm
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Fig. 11. Three conceptual graphs

marries a sailor. In short: The person Tom believes that the person Mary wants
to marry a sailor. Finally, in d3, special contexts denoting negation are used. The
device of two nested negation contexts can be understood as an implication. So
the meaning of the graph is ‘if a farmer owns a donkey, then he beats it’.

Due to the complexity of the system of CGs, it is nearly impossible and
perhaps not even desirable to consider the overall system as an approach to
formal logic. In fact, the whole system of CGs, as described by Sowa, goes beyond
FOL. It can be argued that Sowa’s original system does not fully meet the
requirements of a formal logic system [20], but several fragments of CGs have
been elaborated in a mathematically rigorous manner.

The most prominent fragment are simple CGs, where no sort of context
or negation is used. For this fragment, there does exist a variety of different
formalizations with different notations which only differ in details. A compre-
hensive comparison of the different approaches can be found in [39]. For all
these approaches, a formal syntax, semantics (either via a translation of CGs
to FOL or via direct model-theoretic approach) and reasoning facilities are
provided. Examples are the works of Prediger and Dau, where the reasoning
facilities come in form of graph transformation rules [61, 62, 9, 52, 15], works
of Chein/Mugnier et al, where the entailment between CGs are described by
meaning-preserving graph homomorphisms called projections [8, 52, 11], or works
where so-called standard-models are considered [61, 62, 15]. One can even express
“if-then”-statements with simple CGs, at is has been discussed in [2, 52, 3].

Simple CGs with contexts go beyond FOL. For these graphs, there exist
different formalizations as well. We want to mention the work of Prediger [61,
63], where the semantics for the graphs is based on triadic Formal Concept
Analysis. Prediger provides a sound and complete set of rules for these graphs.
A different approach has been taken by Simonet in [69, 10] by translating the
graphs to FOL-formulas, where the contexts are modeled by assigning to each
concept box an additional argument which models the nesting of the box. In this
approach, the notion of projections is accordingly extended.

For CG without contexts, different kinds of negation have been added. First
we have to mention approaches where only relations, but not whole subgraphs,
can be negated. A first step has been taken bay Kerdiles in [43]. Kerdiles ex-



tends the projections of simple CGs to simple CGs with atomic negation. This
approach has been extended in [50, 54], where for this framework, different log-
ical approaches –classical logic, intuitionistic logic, logic with a closed-world
semantics– are elaborated and compared. Finally, Klinger provides in [45–47] a
different FCA-based approach which extends Predigers work to atomic negation.

Finally, we can consider CGs with full negation, where whole subgraphs can
be negated. Kerdiles considers in [43] full negation as well. A comprehensive ap-
proach to add full negation to CGs is provided by Dau in [13, 14, 16]. In [13], Dau
argues that to express full negation to CGs, a new syntactical entity to express
negation has to be added, and he suggests to use the negation ovals of Peirce’s
existential graphs. These CGs with cuts are equivalent to full FOL with equality
and it is equipped with a sound and complete set of graph transformation rules.

CGs have been implemented in a variety of computer programs. Two com-
prehensive frameworks are provided by Amine8 and Cogitant9. Amine is a java
open source platform for the development of intelligent systems and multi-agent
systems covering several topics of the theory of CGs and AI. Cogitant is a set
of C++-classes enabling to easily handle CGs as well as other objects of the
CG-framework like the taxonomies of concepts and relations as well as rules.

7 Discussion

Steps like realizing the importance of the distinction between abstract and con-
crete syntax, the development of sound and complete diagrammatic reasoning
systems or the development of DRS applications show that the research field of
DRSs has made significant progress in the last decade, but there is still much
more to be done.

Diagrammatic representations of information is investigated from various
perspectives to a large extent, and their usability is sustained both by empirical
and theoretical research. Anyhow, for the particular field of DRSs, this research
has to be conducted to investigate the claim that the diagrams of DRSs are from
a usability point of view superior to symbolic notations. This research must not
be restricted to the diagrams: A distinguishing feature of DRSs is the provision
of diagrammatic reasoning facilities, which thus have to be investigated as well.

It might be doubted that diagrams are generally easier to understand than
symbolic notations. Instead, though diagrams certainly provide very effective
means of displaying some information (like subset relationships), for other kinds
of statements symbolic notations might turn out to be better suited. For this
reason, developing heterogeneous or hybrid notations that incorporate both sym-
bolic and diagrammatic parts is a promising approach. There has already some
research been conducted in this direction, e.g. [30, 76]. In fact, when a formal
language is developed with the goal of a high usability, the design of the language
depends on the requirements of intended application areas. This might render
finding the right language difficult.

8 http://amine-platform.sourceforge.net
9 http://cogitant.sourceforge.net



The syntax, semantics and reasoning facilities for DRSs take place on the
abstract level. In symbolic notations, there does not exist a distinction between
the abstract and concrete level, which leads to straightforward ways of repre-
senting statements in these notations. For DRSs, the situation is different. For
a given statement on the abstract level, we have to find a convenient concrete
representation. In other words: The automatic drawing of diagrams is a core
research challenge for developing DRSs applications.

Finally, research on theorem provers for DRSs is in its infancy. There is
certainly a need for sophisticated theorem provers which both work in an efficient
way (though it is not a goal to outperform existing theorem provers for symbolic
notations) and which produce proofs where the steps of the proofs are easily
understood by users. Again, such theorem provers are needed to support the
usability claim of diagrams.

The research questions can only be addressed by a joint effort of researchers
from different fields like mathematicians, computer scientists, (cognitive) psy-
chologists, or even designers. Thus it will be challenging to find appropriate an-
swers. Anyhow, as the rise of diagrammatic representations in several computer
science areas like software engineering, knowledge representation or semantic
web shows, solving these questions is of highly practical interest.
Acknowledgment The author wants to thank Gem Stapleton from the Visual
Modelling Group for her valuable help and provision of diagrams.
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