
A Formalism for Navigating and Editing

XML Document Structure

Frithjof Dau, Mark Sifer

School of Information Systems and Technology
University of Wollongong, Australia
{dau,msifer} (at) uow.edu.au

Abstract. The use of XML has become pervasive. It is used in a range
of data storage and data exchange applications. In many cases such XML
data is captured from users via forms or transformed automatically from
databases. However, there are still many situations where users must read
and possibly write their own XML documents. There are a variety of both
commercial and free XML editors that address this need. A limitation of
most editors is that they require users to be familar with the grammar
of the XML document they are creating. A better approach is to provide
users with a view of a document’s grammar that is integrated in some
way to aid the user. In this paper, we formalise and extend the design
of such an editor, Xeena for Schema. It uses a grammar tree view to
explicitly guide user navigation and editing. We identify a key property
that such an editor should have, stable reversable navigation, then via
our formal treatment extend the Xeena for Schema design to satisfy it.

1 Introduction

The eXtensible Markup Language (XML) [16] has become a standard foundation
for both data exchange and electronic documents. Many XML languages for
display and data exchange have been defined: XHTML [19] for web browsers,
SVG and X3D for 2D and 3D graphics, MathML for mathematical equations,
and DocBook for written documents such as technical reports. Documents in
these languages can be displayed through suitably configured web browser or
dedicated viewers. XML is already adopted by OpenOffice 2.0, and Microsoft
is adopting XML for it’s office applications as well, as they define languages
for files created by their word processor and spreadsheet applications. Universal
business language (UBL) is one of many languages developed for the exchange
of business data. These are only a small selection of the many document and
data oriented XML languages that exist.

Dedicated tools usually create XML documents. Web authoring tools pro-
vide a WYSIWYG interface that allows users to drag and drop web page ele-
ments from a toolbar and save the generated web pages as XHTML documents.
Similar tools support other document-oriented languages such as MathML and
DocBook. Specific business tools and applications convert data from a variety
of sources into XML languages for exchange and processing. Another approach

for the entry of data documents is web based interactive forms generated from
a DTD or schema by systems such as XForms [18] and Forms-XML [7].

There are XML languages for which dedicated editors are either not avail-
able or not freely available. Because an XML document is a text file, it can be
created and edited with any text editor. An XML enabled web browser such as
Microsoft’s Internet Explorer can check it for well-formedness and validity. How-
ever, this requires authors to observe XML syntax and grammar constraints as
they create and edit. Authors that rarely use XML must learn how to write with
XML tags and attributes, while authors that are familiar with XML must still
learn the document’s grammar. If an author does not use a language regularly
or the language itself is very large or complex this can be a large learning task.
A better choice is an XML editor.

XML editors integrate knowledge of XML syntax and grammar constraints
when given a DTD or Schema. They support the creation of arbitrary XML
documents, providing automatic assistance to keep generated documents well
formed and valid. The significant number of commercial XML editors [15, 20, 21]
and free XML editors [2, 17] that are currently available, confirm user demand
for such editors. These editors provide a grammar view that shows one level of
potential elements.

The Xeena for Schema XML editor [12, 13] integrates a view of a document’s
grammar to aid the user. It uses a more powerful deeper grammar view that
explicitly assists navigation and guides editing. This paper extends earlier work
[12, 13] in two respects. Firstly, we present here a formal treatment of Xeena for
Schema. We identify and formally prove nice key properties of the original Xeena
for Schema design. Our formalism describes a grammar view tree, a document
view tree and the structure preserving mappings between them that facilitate
navigation and editing. Secondly, though a navigational limitation of the original
design is identified, we show how this limitation can be overcome.

2 Related Work

When text documents need to conform to a grammar, authors need to know
the grammar or receive some interactive assistance, in order to create them
manually. Such documents include: computer source codes that must conform
to a particular programming language, technical documents for which allowable
structures have been defined, and more recently XML documents. Many editors
that provide such interactive assistance with some kind of grammar directed
editing have been created. The earliest were syntax directed program source
code editors [3, 14, 22] which have had limited success, as evidenced by the
fact that existing commercial program editors do not use grammar directed
editing, but typically support syntax highlighting or keyword completion only.
Many editors for structured documents, usually large technical document have
also been developed. These have been more successful. In this section we review
these document editors and the reasons for their relative success. We also review
recent XML navigation tools and editors.

2.1 Structured Document Editors

Grammar based editors called structured document editors within the technical
document community have been successful. This is evidenced by the range of
commercial and free structured document editors such as SGML editors currently
available. A key driver in the design of document preparation systems was the
need to separate content from presentation, so that the same content could be
re-used in a variety of settings. This required content to be structured in some
way, so document portions could be referred to or located in a systematic way
for presentation processing. Content was represented as a tree of portions or
elements whose arrangement satisfied a grammatical structure.

Unlike computer programs, structured documents contain markup; start tags
and end tags that delimit an element and explicitly type the enclosed content.
In many document languages, each grammar rule corresponds to an element in
a document. This means that regular grammars are often sufficient for many
structured document languages rather than the richer context free grammars re-
quired for programming languages. For most computer programming languages,
the non-terminal grammar rules have no corresponding visible artifact in a pro-
gram. To contrast, a structured documents nested element tree can reveal its
grammar while a program sources lack such an explicit tree structure. This sug-
gests users will have greater success manipulating a structured document’s more
visible element structure via its grammar.

Grif [6] is an early structured document editor. It provides several document
views. A plain text global view for content entry, an outline or table of contents
view, a presentation view that shows final presentation and a specialised view
for editing mathematical formula. During editing in the global view a popup
menu shows the elements that can be validly added or inserted at the current
document location, while the various views are coordinated around this current
location. Grif does not provide a raw text view that includes markup tags so its
documents are always well formed, and because only valid edit operations are
offered the element structure is always consistent with the grammar. Grif has
also been proposed as a HTML editor for web documents [10]

Another early structured document editor is Rita [5]. Its authors noted ”since
various types of documents require tags with different placement, the creator
of a document must learn and retain a large amount of knowledge”. That is,
because many documents grammars are large, it can be demanding for users
to be familiar enough with a document’s collection of tags to manually create
one. To aid users, the Rita interface provided a presentation view, an element
structure view, and a dynamic menu of element tags. A user could select an
element in the structure view and be presented with the choice of elements that
could be validly inserted. Users could also transform elements via a menu of
valid transformations. To support greater editing flexibility invalid portions of
a document could be marked with a special tag so they were treated as text,
while a patch area allows arbitrary cut and pasting. Both Grif and Rita guide
user editing with one visible grammar level.

2.2 Querying and Mining XML Structure

An integrated grammar view can assist user navigation of large structured doc-
uments. It can assist navigation from one instance of a grammar rule such as a
section header to the next or previous instance. BBQ [8] is such a system for
navigating and querying XML documents. It presents tree views of both a doc-
ument and its grammar. The grammar view recursively presents each grammar
rule as a node in an indented tree. The grammar tree view provides an overview
of the grammar a user can explore to an arbitrary depth while also supporting
navigation. BBQ also supports join-based queries that a user builds via multiple
grammar tree views. Its focus is the application of a grammar tree view to the
querying of large XML documents, while the focus of our work is the application
of a grammar tree view to XML document editing.

Large grammars are also difficult to work with. Many DTDs and XML
Schema are so large that most document instances only use a small subset of
the defined elements. In such cases, presenting an author with all elements that
can be added may be overwhelming. The difficulty is that most grammars are
designed to organise content. They are not designed explicitly for visual presen-
tation to a user. An alternative approach is to study the patterns of element
use in a document, and initially only propose those elements or tree patterns
the user is likely to use next. Because this approach works by studying existing
document content it can be applied to XML documents have no DTD or XML
Schema defined. This is the approach Chidlovskii’s structural advisor for XML
document authoring [4] takes. This approach could be integrated with BBQ
style grammar tree view, by restricting the displayed grammar tree to nodes for
common elements only. This would be a useful extension of our work.

2.3 XML Editors

A wide variety of Commercial and free XML editors that provide grammar assis-
tance for editing are available. Some are element structure-oriented while others
are content-oriented. Xeena [17] is a structure-oriented editor. Editing is done
within a tree view of document elements. Users are guided with a DTD deter-
mined list of possible elements, shown in a separate panel. Users can select one of
these potential elements and add or insert around the current document position.
The Topologi document editor [15] is a content oriented editor for progressively
convert arbitrary text documents into valid XML documents. It allows users to
rapidly apply markup to large documents. Its primary editing view is a raw text
view. It also offers grammar (SGML and XML) guidance when adding elements,
providing users with a choice of valid elements.

Editors can also provide multiple editable views. XMetal [20] provides sev-
eral editable views: a structure view, formatted view and formatted view with
exposed tags. Like Xeena it offers a grammar sensitive list of valid elements to
guide editing. XMLSpy [21] provides two editable document views: an indented
tree view and a nested tree element view. It also offers a grammar sensitive list

of valid elements to guide editing. The Amaya editor [2, 11] provides format-
ted, structure, source text and specialised views for markup languages such as
XHTML, SVG and MathML. It also provides a table of contents view to aid
rapid navigation. All its views are editable. Again, elements can be added by
choosing from a list of valid elements. Elements can also be added manually, in
which case, the system tries to create a series of in-termediate elements down to
the chosen type based on the grammar.

These editors use a document’s grammar to determine the element list pre-
sented in a menu or panel that can be added into a document. Users make valid
edits by inserting them. However, such a list provides a narrow view of the gram-
mar that is only one level deep. It also does not indicate the grammar role of
each potential element, whether it required, optional, repeatable or a choice. Our
editor design is structure-oriented and uses a deeper BBQ like multi-level gram-
mar tree view annotated with grammar roles to better support structure based
navigation and editing. A design that we refine and formalise in this paper.

3 Building and Navigating

This section demonstrates Xeena for Schema editing and navigation to provide
a context for the formal treatment.

3.1 Starting

On startup Xeena for Schema presents a document and its grammar. Figure 1
shows a new report document that contains a title and empty body in the right
panel and its grammar tree in the left panel. The indented grammar tree has
been manually unfolded to show several levels of the report grammar. It pro-
vides an overview that guides user editing. The grammar view uses the visual
syntax shown in figure 2. In XML grammars, each element has a prefix called a
cardinality operator that indicates how many times it may occur in a document
according to the grammar. An ‘?’ indicates that it is optional, i.e. it can occur
zero times or once; an ‘*’ indicates that is can occur arbitrary often, including
zero times; and an an ‘+’ indicates that is can occur arbitrary often, but it has
to occur at least once. If no cardinality operator is given, the new element has
to occur exactly one. In our ongoing formalization, this will be denoted by ‘1’.
Besides the cardinality, each child element participates in either a sequence or a
choice. In Xeena for Schema, round parentheses indicate the former and square
parentheses indicate the latter. A grammar may be recursive. For example if the
List node in figure 1 were unfolded it would contain another List node, and so
on without limit. The grammar view also shows which elements have been in-
stantiated in the document. Instantiated nodes have coloured icons while other
nodes icons are grey. In figure 1 the document only contains a report, title and
empty body element. Only their corresponding nodes in the grammar view are
shown red. The grammar tree view provides both a comprehensive overview of
potential structure and an indication of what has been instantiated so far.

Fig. 1. A new report document

Fig. 2. Visual syntax of our grammar view

3.2 Building

A document is built by adding elements. The grammar tree view shows which
elements can be added. Any grammar node that can occur multiple times or any
node that can occur once but has not been instantiated (shown as grey) can be
added. In figure 1 the report grammar was unfolded five levels deep to show the
row elements. A user adds three row elements by just selecting it and clicking the
add toolbar icon three times. Figure 3 shows the result. Three row elements, all
required intermediate elements and all required compulsory elements are added
by the editor.

An XML grammar may be recursive. Our grammar view supports this. For
example in a report document, a list contains listItems which contain text and

Fig. 3. The document after adding 3 rows

an optional list. Our design does not address the general recursive case directly
because a user will never unfold a recursive grammar tree to an infinite depth,
but it does address the finite unfoldings of a recursive grammar that a user does
when they progressively open the grammar tree. For example when a user opens
the list node in the grammar view its child node listItem becomes visible, then
after opening listItem its children a text node and a list node become visible,
then this list node could be opened; increasing the depth of the visible tree
further. We note that grammar tree nodes always have unique path names, for
example the path names section.list and section.list.listItem.list are distinct.

3.3 Unstable and Stable Navigation

The grammar view always shows the surrounding context for the current docu-
ment cursor element. After adding the three row elements in figure 3, if the user
selects the table node in the grammar view, the document cursor will move to
the corresponding table element. Figure 4 shows this. To reverse this, the user
can select the third row element in the document view again. The result would
be figure 3 again. However, with Xeena for Schema if the user attempts to do
this via the grammar view, i.e., if he clicks in the last step not on the third
row element in the document view, but on the row element in the grammar
view instead, the behaviour is different. The user would expect to return to the
third row after this up-down navigation via the grammar view, but instead the
document cursor has lost it’s initial position (third row) and ended up on the
first row. This is shown in figure 5. This is a limitation of the Xeena for Schema
design that our formal treatment will characterise and address.

Fig. 4. The user selects the table node in the grammar view movings the document
cursor to the corresponding table element

Fig. 5. The user selects the row node again in the grammar view moving the document
cursor to the first row element.

Figure 6 outlines a stable navigation design that addresses this. The doc-
ument cursor is separated into two parts: (i) the element the user has clicked
(shown with a black rectangle) which established the range of interest and (ii)
the original document cursor (shown with blue fill). Navigation in the grammar
view only changes the document cursor, leaving the range cursor unchanged.
The range cursor only changes when the user manually selects an element in the
document view. In figure 6 (i) both of cursors start as element c2 but separate
in (ii) after b is selected in the grammar view, into document cursor b and range
cursor c2. In (iii) after c is selected in the grammar view, the document cursors
returns to c2 it’s initial position, while the range cursor has not changed and
so remains positioned at c2. This downwards navigation has retained the initial
context, set when the user selected the c2 element in the document view.

If the user selects a non-comaprable node in the grammar view there are sev-
eral approaches which preserve stable navigation. We describe these alternative
approaches for stable navigation later after providing our formal treatment.

Fig. 6. Stable navigation separate the document cursor into document cursor and range
cursor

4 Labelled Ordered Trees

In this section, XML grammars and XML documents are formalized as labelled
ordered trees, according to the notions of [1] or [9]. We assume that the reader
is familiar with trees. To clarify matters, trees are in our approach formalized
as posets (P,≤), where the smallest element of P is the root of the tree. For
p ∈ P , we set ↓ p := {q ∈ P | q ≤ p} and ↑ p := {q ∈ P | q ≥ p}. Technical
terms like Upper/lower neigbours, minimal/maximal elements, childs,
siblings and leaves etc. are defined as usual. The infimum of two elements p
and p is denoted by p ∧ q. For p, q ∈ P with q < p, let qp denote the uniquely
given upper neighbour of q with q < qp ≤ p. In the Hasse-diagram representation
of trees, will draw them ’upside down’, i.e., the bottom element of the tree is at
the top of the representation.

Each element p ∈ P gives rise to the path ↓ p. In the following scrutiny on
XML-trees, we are more interested in the paths than the elements of P , but as
the elements stand in one-to-one to the paths, we do not provide a notation for
the paths on its own. Note we have p ≤ q ⇐⇒↓p ⊆↓q.

Labelled ordered trees will be defined to be trees, where the nodes in the
tree correspond to XML elements, their labels denote the type names of the
elements. Given a node, its children are totally ordered. For the ongoing formal
treatment, it is convenient to extend this additional order to all elements of the
tree.

Definition 1 (Additional Order on Trees). Let (P,≤) be a tree. A partial
order ⊑ on P is called order on siblings, iff1 whenever two distinct elements
p, q are comparable w.r.t. ⊑, they are siblings. If moreover siblings are always
comparable w.r.t. ⊑, we call ⊑ a total order on siblings, and (P,≤,⊑) is
called ordered tree.

To each order on siblings ⊑, we assign an extension ⊑∗ of ⊑ as follows: For
two incomparable (w.r.t. ≤) elements p1, p2 ∈ P , let q := p1 ∧ p2, and we set
p1 ⊏∗ p2 :⇔ qp1 ⊏ qp2 . Let ⊑∗ be the reflexive closure of ⊏∗.

In the Hasse-diagram representation of trees, given two siblings p and q, we
will draw p to the left of q iff p ⊑ q.

Of course, ⊏∗ is not simply another order on P , but it has to respect some
additional restrictions. For example, if a path A is left to a path B, then each
subpath of A should be left to B as well. We first fix this idea.

Definition 2 (Respecting ≤). A relation R ⊆ P ×P respects ≤, if we have
R∩ ≤= ∆P (:= {(p, p)|p ∈ P}), and for all p, q, p′, q′ with p 6= q, p ≤ p′ and
q ≤ q′, we have pRq ⇔ p′Rq′.

Now, given a tree (P,≤), the orders R on P which respect ≤ are exactly the
orders obtained by extending orders on siblings. Moreover, such an R is obtained
from extending a total order on the siblings iff R is a total order on the leaves
of P . This is captured by the following lemma.

1 iff: if and only if

Lemma 1 (Extending Sibling Orders). Let (P,≤) be a tree, let ⊑ be an or-
der on siblings of P . Then ⊑∗ is an order extending ⊑ which respects ≤. Moreover,
⊑ is a total sibling order iff ⊑∗ is a total order on the leaves.

Vice versa, let (P,≤) be a tree and R be an order on P which respects ≤.
Then there exists a order ⊑ on the siblings with R = ⊑∗.

Proof: We start with the first propostion. We first show that ⊏∗ is a strict order.
As ⊏∗ is defined only on pairs of incomparable (w.r.t. ≤) elements, it is obviously
irreflexive. Now let p1 ⊏∗ p2 ⊏∗ p3; we have to show p1 ⊏∗ p2. Let q1 := p1 ∧ p2,
q2 := p2 ∧ p3, and q := p1 ∧ p3. We have qp1

1 ⊏ qp2

1 and qp2

2 ⊏ qp3

2 . Moreover,
as q1, q2 ≤ p2, we see that q1 and q2 are comparable. We do a case distinction.
For q1 = q2, we have q = q1 = q2, thus qp1 ⊏ qp2 ⊏ qp3 , hence qp1 ⊏ qp3 , thus
p1 ⊏ p3. For q1 < q2, we have q = q1, thus qp1 ⊏ qp2 = qp3 , hence qp1 ⊏ qp3 ,
thus p1 ⊏ p3. The case q1 > q2 is done analogously to the last case. So ⊏∗ is a
strict order, thus ⊑∗ is an order.

Obviously, for siblings p1, p2 and q := p1∧p2, we have p1 = qp1 and p2 = qp2 ,
thus ⊑∗ is indeed an extension of ⊏∗. Moreover, ⊑∗ respects ≤ by definition.

Next, let ⊑ be a total sibling order, and let p1, p2 be two distinct leaves of
P . Then p1 and p2 are incomparable w.r.t. ≤. Let q := p1 ∧ p2, thus q < p1, p2.
As qp1 , qp2 are siblings, they are comparable with respect to ⊏, thus, due to the
definition of ⊏∗, p1 and p2 are comparable with respect to ⊏∗. Thus ⊑∗ is a total
order on the leaves.

Vice versa, let ⊑∗ is a total order on the leaves, and let p1, p2 be two siblings.
Then there are leaves p′1, p

′
2 with p1 ≤ p′1 and p2 ≤ p′2. Now p′1 and p′2 are

comparable with respect to ⊑∗, and ⊑∗ respects ≤, so p1 and p2 are comparable
with respect to ⊑.

As now the first proposition of the lemma is proven, we continue with the
second. Let R be an order on P which respects ≤. Let ⊑ be the restriction of R
to siblings. Let p1, p2 distinct elements of P . If p1, p2 are incomparable (w.r.t.
≤), for q := p1 ∧ p2 we have

p1Rp2
R resp. ≤
⇐⇒ qp1Rqp2

Def.⊑
⇐⇒ qp1 ⊑ qp2

Def. ⊑∗
⇐⇒ p1 ⊑ p2

If p1, p2 are comparable (w.r.t. ≤), then (p1, p2) /∈ R by Def. 2 and (p1, p2) /∈⊑∗

by Def. 1. We conclude R =⊑∗. �

So a labeled ordered tree could be alternatively be defined to be a tree with
an additional order which respects ≤ and which is a total order on all leaves
of the tree. To ease the notation, if an ordered tree (P,≤,⊑) is given, we will
from now on identify the total order ⊑ on the siblings with its extension ⊑∗.
Note that for two distinct nodes p, q, they are incomparable w.r.t. ≤ iff they are
comparable w.r.t. ⊑.

Definition 3 (Labeled Ordered Tree). Let L be a set of labels, denoting
the type names of the elements. An ordered, labeled tree (loto) is a
structure (P,≤, ⊑, l) where (P,≤) is an ordered tree and l : P → L is a labeling
function.

Let (P,≤P , ⊑P , lP) and (Q,≤Q, ⊑Q, lQ) be ordered, labeled trees. We say
that p ∈ P and q ∈ Q are congruent and write p ∼= q iff the total orders ↓ p
and ↓ q are ‘the same sequence of labels’, i.e., there exists a order-isomorphism
i :↓ p →↓ q with lQ(i(s)) = i(lP (s)) for all s ≤ p. An ordered, labeled tree
(P,≤, ⊑, l) is called purified, iff there are no p, p′ ∈ P with p 6= p′ and p ∼= p′.
Finally, for two distinct siblings p, q, we set p ⊑l q :⇐⇒ p ⊑ q and p ∼= q.

The acronym ‘loto’ is adopted from [9] and stands for ‘labeled ordered tree
object’. Note that, similarly to ⊑∗, the order ⊑l respects ≤.

Now we are finally prepared to define XML grammars and documents by
means of labeled ordered trees.

Definition 4 (XML-Trees). A document tree is a nonempty labeled or-
dered tree. A grammar tree is a structure (P,≤, ⊑, num, nk), where (P,≤, ⊑)
is a nonempty, purified, labeled ordered tree, num : P → {∗,+, ?, 1} is a mapping
such that nk maps the bottom of P to 1, and nk : P → {s, c} is a mapping.

The mapping num formalizes the cardinality operator of XML grammars,
and the mapping nk (nodekind) indicates whether we have to make a choice
among the siblings or not. Note that we consider only non-ambigous XML-
grammars, that is, the corresponding XML-trees are purified.

5 Mapping Documents to Grammars

As described in section 3, in each state the user has selected an element in the
XML grammar and an element in the XML document. Changing the selected
element in the XML grammar affects the selected element in the XML document,
and vice versa, changing the selected element in the XML document affects the
selected element in the XML grammar. To describe the interdependence between
the elements in the XML grammar and in the XML document formally, in this
and the following section, we define mappings between the grammar tree and
the document tree.

In this section, we start with the easier direction, which is mapping nodes in
the document tree to nodes in the grammar tree. In order to do so, we have to
define when a document tree conforms to a given grammar as well. This is done
by the following definition.

Definition 5 ((Partial) Valid Docs). Let G := (G,≤G, ⊑G, lG, numG, nkG)
bea grammar-tree, let D := (D,≤D, ⊑D, lD) be document-tree. We say that D
is a partial valid document w.r.t. G, iff

1. For each element d ∈ D, there exists exactly2 one g ∈ G with d ∼= g. This
element will be denoted ψ(d).

2 As G is purified, we could replace ’exactly’ by ’at least’.

2. For all d1, d2 ∈ D we have

d1 ⊑D d2 =⇒ ψ(d1) ⊑G ψ(d2)

That is., ψ respects the left-right-order ⊑.
3. There do not exist a d ∈ D with distinct children d1, d2D with nk(d) = c

and d1 6∼= d2 (i.e., ψ respect choices).

Let d ∈ D. We say that d is completed, iff we have:

1. If nk(ψ(d)) = s, then:
(a) For each child g′ of ψ(d) with nk(g′) = +, there exists at least one child

d′ of d with ψ(d′) = g′.
(b) For each child g′ of ψ(d) with nk(g′) = ?, there exists at most one child

d′ of d with ψ(d′) = g′.
(c) For each child g′ of ψ(d) with nk(g′) = 1, there exists exactly one child

d′ of d with ψ(d′) = g′.
2. If nk(ψ(d)) = c, and if there is a child g′ of g with num(g′) ∈ {+, 1}, then

d has at least one child.

We say that a partial valid document D is a complete valid document
w.r.t. G iff all d ∈ D are completed.

The mapping ψ is the mapping from grammar trees to document trees, which
is used to describe the navigation formally. A first nice property in terms of stable
navigation is that ψ respects ≤, and on purified downsets, it is even an order-
embedding.

Lemma 2 (Properties of ψ). Let G := (G,≤G, ⊑G, lG) be a grammar tree
and D := (D,≤D, ⊑D, lD) be partial valid document tree w.r.t. G. Then ψ re-
spects ≤D, i.e., for all d1, d2 ∈ D we have d1 ≤D d2 ⇒ ψ(d1) ≤G ψ(d2), and
ψ[D] is a downset of G (with ψ[D] := {ψ(d) | d ∈ D}).

If B ⊆ D is a purified downset, then ψ restricted to B is even an order
embedding, i.e., for all b1, b2 ∈ B we have b1 ≤D b2 ⇔ ψ(b1) ≤G ψ(b2).

Proof: Let d1, d2 ∈ D with d1 ≤D d2. Then there is a g′ ∈ G with g′ ≤ ψ(d2)
and g′ ∼= ψ(d1), thus g′ = ψ(d1) due to the definition of ψ. Hence we get
ψ(d1) ≤ ψ(d2). It can be similarly argued that ψ[D] is a downset.

Now let B be a purified downset and b1, b2 ∈ B with ψ(b1) ≤G ψ(b2). Then
there exists d ∈ D with d ≤ b2 and d ∼= ψ(b1), hence d ∼= b1. As B is a downset,
we have d ∈ B, and as B does not contain distinct and congruent elements, we
have d = b1. Hence we obtain b1 ≤ b2. �

6 Mapping Grammars to Documents

In the last section, we defined the mapping ψ from document trees to grammar
trees. The definition of ψ is straight forward. In this section, we consider the

other direction, that is, mapping nodes in the grammar tree to nodes in the
document tree.

Note first of all, as the document tree will usually be only partial valid, but
not completed, we cannot expect that we find for each grammar node a congruent
document node. On the other hand, it might happen that for a given node in
the grammar tree, we can have a number of different congruent nodes in the
document tree.

The basic idea of our approach is that we have a selected node, called range
cursor, in the document tree. This range cursor will be used to identify a
set of nodes in the document tree which can be considered to be a range of
interest fixed by the range cursor. It is the introduction of this range cursor into
our formalism that makes stable navigation possible. The mapping from the
grammar tree to the document tree will map each grammar node to a document
node in this range of interest. We will use the letter ϕ to denote the mapping
from grammar trees to document trees, and as ϕ As ϕ depends on on a range
cursor r, it will be indexed with r (i.e., we write ϕr).

Assume we have an XML-document, and a range cursor, which is a node
rc in the corresponding document tree. This node corresponds to a path. To
which other paths can we move? We can move to subpaths of the given path
↓ r, but not to paths which are congruent to a subpath of the given path ↓ r
without already being a subpath. Or to put it another way: If we have a path
which deviates from the given path, then the node where it deviates must have
a different label. This idea will be fixed by a target area TA(r). Now, the
target area may still contain congruent, but different nodes. If we have such a
choice, we choose the left-most path. The left-most elements in the target area
will be called the range of r. We first have to fix these notions formally.

Definition 6 (Target Area, Range). Let D := (D,≤, ⊑, l) be a labeled, or-
dered tree, let r ∈ D be an element. Let

TA(r) := {d ∈ D | ∀q ≤ d ∀c ≤ r : q ∼= c⇒ q = c} .

Now let Rg(r) be the set of all minimal elements of TA(r) with respect to ⊑l.
We call Rg(r) the range of r.

Due to the informal description, it should be clear that the target area of a
given document cursor is a down-set. This carries over to the range. Moreover,
the range is purified. These claims are proven in the following lemma.

Lemma 3 (Properties of Range). Let D := (D,≤, ⊑, l) be a labeled, ordered
tree, let r ∈ D. Then Rg(r) is a downset w.r.t. ≤, and it is purified.

Proof: We first prove that Rg(r) is a downset. Let d ∈ Rg(r) and e < d. We
obviously have Rg(r) ⊆ TA(r), thus d ∈ TA(r), and TA(r) is a downset w.r.t. ≤,
thus e ∈ TA(r) as well. Assume that e is not minimal w.r.t. ⊑l, i.e., there exists
f ∈ TA(r) with f ⊏∗l e. Then, as ⊑l respects ≤ due to Lem. 1, we have f ⊏∗l d
as well, in contradiction to the minimality of d w.r.t. ⊑l in TA(r). So we obtain
e ∈ Rg(r).

d2 e1 e2d1 d4 e3 e4d3

f2f1 g2g1

b1 b2 c1

a1

cdRg() cdTA()range cursor r

d2 e1 e2d1 d4 e3 e4d3

f2f1 g2g1

b1 b2 c1

a2

b3 b4 c2 c3

a1 a2

b3 b4 c2 c3

Fig. 7. Target areas and ranges

Assume Rg(r) is not purified. So there are d, e ∈ Rg(r) with d 6= e and d ∼= e.
Then d, e are incomparable w.r.t. ≤. Let q := d ∧ e, thus q < d, e. From qd ≤ d,
qe ≤ e, and d ∼= e we conclude qd ∼= qe. Thus qd, qe are comparable w.r.t. ⊑l,
thus d, e are comparable w.r.t. ⊑l. So d or e is not minimal w.r.t. ⊑l, which is a
contradiction. �

Now we can define the desired mapping ϕr and prove that it is, similar to ψ,
order-preserving, and that it to some extent the inverse mapping to ψ.

Lemma 4 (Mapping Induced by a Document Cursor). Let a grammar-
tree G := (G,≤G, ⊑G, lG) be given and let D := (D,≤D, ⊑D, lD) be partial valid
document tree w.r.t. G, let r be a document cursor. Let ϕr : G → D be defined
as follows:

ϕr(g) = max≤{d ∈ Rg(r) | ψ(d) ≤ g}

Then ϕr well-defined and order-preserving (w.r.t. ≤). For each b ∈ Rg(r), we
have ϕr(ψ(b)) = b. Finally, we have ψ(ϕr(g)) ≤ g for each g ∈ G.

Proof: Let Φ(g) := {d ∈ Rg(r) | (ψ(d) ≤ g} for each g ∈ G. The root of D is an
element of Rg(r), thus it is an element of Φ(g), so Φ(g) 6= ∅. Let d1, d2 ∈ Φ(g).
Then as ψ(d1) ≤ g and ψ(d2) ≤ g, ψ(d1) and ψ(d2) are comparable w.r.t. ≤.
As Rg(r) is a purified downset due to Lem. 3, from Lem. 2 we conclude that
d1 and d2 are comparable w.r.t. ≤ as well. So Φ(g) is a nonempty total order,
thus it has a maximal element, i.e., ϕr is well-defined. Moreover, for g1 ≤ g2, we
have Φ(g1) ⊆ Φ(g2), thus ϕr(g1) = max≤Φ(g1) ≤ max≤Φ(g2) = ϕr(g2), so ϕr is
order-preserving.

We have Φ(ψ(b)) = {d ∈ Rg(r) | (ψ(d) ≤ ψ(b)} = {d ∈ Rg(r) | d ≤ b} for
each b ∈ Rg(r) due to Lem. 2, which yields ϕr(ψ(b)) = b.

Finally, ψ(ϕr(g)) ≤ g follows immediately from the definition of ϕr. �

For illustrating ϕr, we come back to the second example of Fig. 7. The
corresponding mapping ϕr is depicted in Fig. 8.

*d *e*d *e

*a

d2 e1 e2d1

b1 b2 c1

a2

b4 c2b3

a1

c3

f2f1 g2g1

e3d3 d4 e4

*c

*f

*b

Fig. 8. Example for ϕr

7 Stable Navigation Approaches

Our formal description of the grammar to document mapping in the previous
section introduced a range cursor that was distinct from the target area. That is,
the document may contain two cursors from a users perspective. A cursor that
captures where the user last clicked and a cursor that shows where the target of
the grammar cursor is. Figure 6 introduced a visual syntax for these cursors. In
this section we describe how this separation provides the foundation for several
stable navigation designs.

When using Xeena for Schema, in each state an element in the XML gram-
mar, the grammar cursor, and an element in the XML document, the document
cursor, is selected. Changing the selected element in the grammar view induces a
new selected element in the document, and vice versa, changing the selected ele-
ment in the document view induces a new selected element in the grammar. This
changes have been formally captured by the mappings ψ and ϕr. The mapping
ϕr relies on a range cursor r. For our formalization of navigation, let a state
be a triple (cg, cd, r) with a grammar cursor cg ∈ G, a document cursor
cd ∈ D, and an range cursor r ∈ D. Now the navigation can be captured as
follows:

1. If a user clicks in a state (cg, cd, r) on a grammar node g, then let (g, ϕr(g), r
′)

be the new state.
2. If a user clicks in a state (cg, cd, r) on a document node d, then let (ψ(d), d, r′)

be the new state.

We leave it for a moment open how r′ is obtained.
We have shown that both ψ and ϕr are order preserving. That is, for example,

if a user clicks in a given state on a grammar element below the grammar cursor,
the document cursor changes to a new document cursor below the old one as
well. So, the navigation is to some extent well behaved.

Now assume a user selects a grammar cursor g1, then selecting a grammar cur-
sor g2 ≥ g1, and then he selects g1 again. This yields a series of states (g1, c1, r1),
(g2, c2, r2), (g1, c3, r3). The question is: Does at the end of this ‘hopping up and
back’ procedure on the grammar side, we are back on the same document cursor
as well? If this is true, i.e. if we necessarily have c3 = c1, we call our nav-
igation upward stable w.r.t. the grammar. The notions of downward
stable w.r.t. the grammar (where we then impose the condition g2 ≤ g1)
and upward/downward stable w.r.t. the document (where we navigate
on the document instead of the grammar) are defined analogously. Obviously, it
is desirable that the navigation is in all these respects stable.

Let us first note that, as ψ does not depend on the range cursor, our navi-
gation is always upward and downward stable w.r.t. the document. So we have
to discuss only stable grammar navigation.

In the Xeena for Schema implementation, the range cursor is simply set to
be the document cursor (i.e., we have only states (cg, cd, cd). In this case, the
navigation is upward stable w.r.t. the grammar. This can easily be seen, as we
have c2 ≥ c1, thus c1 ∈ Rg(c2) (see Lemma 3). But, as discussed in section 3.3,
this navigation is not downward stable w.r.t. the grammar.

Automatically changing the range cursor whenever the grammar cursor is
changed is not appropriate. Certainly not when a user changes from a given
grammar cursor to a new grammar cursor below, the range cursor should remain.
Thus a different approach for changing the range cursor is needed. There are
basically two different approaches:

1. The range cursor remains if the a user changes from a given grammar cursor
to a new comparable grammar cursor (below or above). If the user changes
to a new, incomparable grammar cursor, the range cursor is set to the new
document cursor.

2. The range cursor is never changed when the user changes the grammar cur-
sor. Instead, the user has to explicitely set the range cursor.

These approaches yield stable navigation. It is unlikely that a pure theoretical
investigation can determine which of the given behaviours is best suited for
users. The different approaches need to be implemented then evaluated in future
work. But regardless of the choice, as they all yield stable navigation they are a
significant improvement on the Xeena for Schema implementation.

8 Conclusion

We have presented a formal description that extends the grammar based navi-
gation and editing of XML document trees implemented in Xeena for Schema.
Our formal description abstracts beyond that implementation by dealing with
generic XML grammar and document trees so that the design can be applied
more broadly.

A key part of our formalism was the inclusion of a range cursor that captures
user selection in the document view. This extra state allowed our revised design

to support stable navigation, unlike Xeena for Schema which does not. This
process of finding limitations and solving them is a major benefit of formalising
designs in general, but is particularly so in the case of designing visual notations
and languages and the interactive systems that use them.

Acknowledgment

The second author led the development of the Xeena for Schema XML editor
while he was with the Knowledge Management group at IBM’s Haifa Research
Laboratory in Israel.

References

[1] Abiteboul S.: Semistructured data: from practice to theory. In Proc. of the IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press, (2001)
379–386

[2] Amaya editor/browser. http://www.w3.org/Amaya/Overview.html (accessed
2007)

[3] Balance R.A., Graham S.L., and Van De Vanter M.L.: The pan language-based
editing system. ACM Trans. on Software Engineering and Methodology, Vol. 1(1)
(1992) 95–127

[4] Chidlovskii B.: A structural Advisor for the XML document authoring. In Proc.
ACM Document Engineering, (2003)

[5] Cowan D.D., Mackie E.W., Pianosi G.M., Smit G.V.: Rita an editor and user
interface for manipulating structured documents. Electronic Publishing, John
Wiley, Vol. 4(3) (1991) 125–150

[6] Furuta R., Quint V., Andre J.: Interactively editing structured documents. Elec-
tronic Publishing, Vol. 1(1) (1988) 19–44

[7] Kuo Y.S., Shih N.C., Tseng L., Hu H.C.: Generating form-based user interfaces
for XML vocabularies In Proc. ACM Document Engineering, (2005) 58–60.

[8] Munroe K.D., Papakonstantinou Y.: BBQ: A visual interface for integrated brows-
ing and querying of XML. In Proc. of IFIP Visual Database Systems, Kluwer,
(2000) 277–296

[9] Papakonstantinou Y., Vianu V.: DTD inference for views of xml data. In Proc.
of ACM PODS, (2000) 35–46

[10] Quint V., Roisin C., Vatton I.: A structured Authoring Environment for the
World-Wide Web. In Proc. of the World Wide Web Conference, (1995)

[11] Quint V., Vatton I.: Techniques for authoring complex XML documents. In Proc.
ACM Document Engineering, (2004) 115–123

[12] Sifer M., Peres Y., and Maarek Y.: Xeena for schema: creating xml data with an
interactive editor. In Proc. of DNIS, LNCS volume 2544, Springer, (2002) 133–146

[13] Sifer M., Peres Y., and Maarek Y.: Browsing and editing xml schema documents
with an interactive editor. In Proc. of DNIS, LNCS volume 2822, Springer, (2003)
97–111

[14] Teitelbaum T., Reps T.: The Cornell Program Synthesizer: A syntax-directed
programming environment. Communications of the ACM, vol. 24 (9), (1981)
563–573

[15] Topologi markup editor. www.topologi.com/products/tpro (accessed 2007).

[16] XML The extensible markup language 1.0 (third edition), W3C recommendation
2004. www.w3.org/TR/2004/REC-xml-20040204

[17] Xeena at alphaworks. www.alphaworks.ibm.com/tech/xeena (accessed 2007)
[18] Xforms 1.0 (second edition), W3C recommendation 2006.

www.w3.org/TR/xforms
[19] XHTML 1.0 The extensible hypertext markup language (second edi-

tion), W3C recommendation 26 January 2000, revised 1 August 2002.
www.w3.org/TR/xhtml1

[20] XMetal Author. na.justsystems.com/content.php?page=xmetal (accessed 2007).
[21] Xml Spy. www.altova.com/manual2007/XMLSpy/SpyEnterprise/ (accessed

2007).
[22] Zelkowits M.: A small contribution to editing with a syntax directed editor.

In Proc. of the ACM Software Engineering Symposium on Practical Software
Development Environments, (1984)

