
A Diagrammatic Reasoning System for ALC

Frithjof Dau, Peter Eklund

Faculty of Informatics
University of Wollongong

Wollongong, NSW, 2522 Australia
dau,peklund@uow.edu.au

Abstract. Description logics (DLs) are a well-known family of knowl-
edge representation (KR) languages. The notation of DLs has the style
of a variable-free first order predicate logic. In this paper a diagrammatic
representation of the DL ALC– based on Peirce’s existential graphs – is
presented and a set of transformation rules on these graphs provided.
As the transformation rules modify the diagrammatic representation of
ALC this produces a diagrammatic calculus. Some examples present in
the paper illustrate the use and properties of this calculus.

1 Introduction

Description logics (DLs) [1] are a well-known and understood family of knowledge
representation (KR) languages tailed to express knowledge about concepts and
concept hierarchies. The basic building blocks of DLs are atomic concepts, atomic
roles and individuals that can be composed by language constructs such as inter-
section, union, value or number restrictions (and more) to build more complex
concepts and roles. For example, if Man, Female, Male, Rich, Happy are
concepts and if hasChild is a role, we can define

Manu∃hasChild.Femaleu∃hasChild.Maleu∀hasChild.(RichtHappy)

as the concept of men who have both male and female children where all children
are rich or happy. Let us call this concept HappyMan.

The formal notation of DLs has the style of a variable-free first order predicate
logic (FOL) and DLs correspond to decidable fragments of FOL. Like FOL,
DLs have a well-defined, formal syntax and Tarski-style semantics, and they
exhibit sound and complete inference features. The variable-free notation of DLs
makes them easier to comprehend than the common FOL formulas that include
variables. Nevertheless without training the symbolic notation of FOL can be
hard to learn and difficult to comprehend.

A significant alternative to symbolic logic notation has been the develop-
ment of a diagrammatic representation of DLs. It is well accepted that diagrams
are, in many cases, easier to comprehend than symbolic notations [2–4], and in
particular it has been argued that they are useful for knowledge representation
systems [5, 6]. This has been acknowledged by DL researchers and is a common
view among the broader knowledge representation community [7].

A first attempt to experiment with diagrammatic KR can be found in [5],
where a graph-based representation for the textual DL CLASSIC is elaborated.
In [8], a specific DL is mapped to the diagrammatic system of conceptual graphs
[9]. In [10], a UML-based representation for a DL is provided. In these treatments
the focus is on a graphical representation of DL, however reasoning is a distin-
guishing feature of DLs. Correspondences between graphical representation of
the DL and the DL reasoning system are therefore important inclusions in any
graphical representation. However, to date they remain largely unelaborated.

On the other hand there are diagrammatic reasoning systems that have the
expressiveness of fragments of FOL or even full FOL. Examples are the various
classes of spider- and constraint diagrams [11, 12], which are based on Euler
circles and Venn-Peirce-diagrams, or the system of Sowa’s conceptual graphs
[9], which are based on Peirce’s existential graphs. Contemporary elaborations
of these systems include a well-defined syntax, extensional semantics and/or
translations to formulas of FOL, and – most importantly for the goal of this paper
– sound and complete calculi which can be best understood as manipulations of
the diagrams.

This paper presents a diagrammatic representation of the DL ALC in the
style of Peirce’s existential graphs (EGs) [13, 4]. An diagrammatic calculus for
ALC, based on Peirce’s transformation rules, is provided. The DL ALC is the
smallest propositionally closed DLwhich renders it a good starting point for
developing DLs as diagrammatic reasoning systems. More expressive DLs are
targeted for further research. Note also that it is well known that ALC is a
syntactical variant of the multi-modal logic K, thus the results of this paper can
be reused in modal logics. The reasons for choosing EGs are given in [14].

Reasoning with DLs is usually carried out by means of tableau algorithms.
The calculus of this paper differs significantly from this approach in two re-
spects. First, the rules of the calculus are deep-inference rules, as they modify
deep nested sub-formulas, whereas tableau algorithms (similar to other common
calculi) only modify formulas at their top-level. Secondly, the rules can be best
understood to modify the diagrammatic Peirce-style representations of ALC, i.e.,
the calculus is a genuine diagrammatic calculus.

The paper is structured as follows. First, an introduction existential graphs
is provided in Section 2. In Section 3 the syntax and semantics of the DL ALC
as we use it in this paper is introduced. In Section 4, the diagrammatic calculus
for ALC is presented. Due to space limitations, the proof of its soundness and
completeness is omitted: this result can be found in [14]. In Section 5, some
examples and meta-rules for the calculus are provided. Finally, Section 6 provides
a summary of this research and its significance.

2 Existential and Relation Graphs

Existential graphs (EGs) are a diagrammatic logic invented by C.S. Peirce (1839-
1914) at the turn of the 20th century. We briefly introduce a fragment of EGs
called Beta, corresponding to first order logic.

2

The graphs of Beta are composed of predicate names of arbitrary arity, heav-
ily drawn lines, called lines of identity, are used to denote both the existence
of objects and the identity between objects. Closed curves called cuts are used
to negate the enclosed subgraph. The area where the graph is written or drawn
is what Peirce called the sheet of assertion. Consider the following EGs.

oncat mat21 oncat mat21oncat mat21

The first graph contains two lines of identity, hence it denotes two (not necessar-
ily different) objects. They are attached to the unary predicates ‘cat’ and ‘mat’,
respectively, and both are attached to the binary predicate ‘on’. The meaning of
the graph is therefore ‘there is a cat and a mat such that the cat is on the mat’,
or in short: ’a cat is on a mat’. In the second graph, the cut encloses our first
example completely. Hence its meaning is ‘it is not true that there is a cat on a
mat’. In the third graph, the left line of identity begins on the sheet of assertion.
Hence, the existence of the object is asserted and not denied. For this reason
this graph is read ‘there is a cat which is not on any mat’.

Lines of identity may be connected to networks that are called ligatures.
In the two left-most graphs in the figures below ligatures are used. The meaning
of these graphs is ‘there exists a male, human african’, and ‘it is not true that
there is a pet cat such that it is not true that it is not lonely and owned by
somebody’, i.e., ‘every pet cat is owned by someone and is not lonely’.

EGs are evaluated to true or false. Nonetheless, they can be easily extended
to Relation Graphs (RGs) [15, 16] which are evaluated to relations instead.
This is done by adding a syntactical device that corresponds to free variables.
The diagrammatic rendering of free variables can be done via numbered question
markers. The rightmost graph below is a relation graph with two free variables.
This graph describes the binary relation is stepmother of.

male

African
human

cat
pet ownedby

lonely

21

mother_of

father_ofmarried_with

malefemale
1

1
1

1

1

2

2

2?1 ?2

3 The Description Logic ALC

The vocabulary (A,R) of a DL consists of a set A of (atomic) concepts,
denoting sets of individuals, and a set R (atomic) roles, denoting binary rela-
tionships between individuals. Moreover, we consider vocabularies that include
the universal concept >. From these atomic items more complex concepts and
roles are built with constructs such as intersection, union, value and number re-
strictions, etc. For example, if C, C1, C2 are concepts, then so are C1 uC2, ¬C,
∀R.C, ∃R.C, or ≤ nR.C (these constructors are called conjunction, negation,
value restriction, existential restriction, and qualified number restriction).

3

In this paper we focus on the description logic ALC. For our purpose we
consider ALC to be composed of conjunction, negation and existential restric-
tion. In contrast to the usual approach, in our treatment the concepts of ALC
are introduced as labeled trees. This is more convenient for defining the rules of
the calculus, and the labeled trees are conveniently close to Peirce’s notion of
graphs.

An interpretation is a pair (∆I , I), consisting of an nonempty domain
∆I and interpretation function I which assigns to every A ∈ A a set
AI ⊆ ∆I and to role R ∈ R a relation RI ⊆ ∆I ×∆I . We require >I = ∆I .

Trees can be formalized either as special graphs or as special posets. We
adopt the second approach, i.e., a tree is a poset (T,≥), where s ≥ t can be
understood as ‘s is an ancestor of t’. A labeled tree is a structure T := (T,≤
, ν), where (T,≤) is a tree and ν : T → L is a mapping from the set of nodes to
some set L of labels. The greatest element of T is the root of the tree. As is
usual, each node v gives rise to a subtree Tv (Tv = (Tv,≥

∣∣
Tv×Tv

, ν|Tv) with
Tv := {w ∈ T | v ≥ w}). We write T′ ⊆ T, if T′ is a subtree of T. Isomorphic
labeled trees are implicitly identified.

Next we introduce some operations to inductively construct labeled trees.
We assume to have a set L of labels.
Chain: Let l1, . . . , ln ∈ L. With l1 l2 . . . ln we denote the labeled tree T := (T,≥
, ν) with T := {v1, . . . , vn}, v1 > v2 > . . . > vn and ν(v1) = l1, . . . , ν(vn) = ln.
That is, l1 l2 . . . ln denotes a chain, where the nodes are labeled with l1, l2, . . . , ln,
respectively. We extend this notation by allowing the last element to be a labeled
tree: If l1 l2 . . . ln ∈ L and if T′ is a labeled tree, then l1 l2 . . . lnT′ denotes the
labeled tree T := (T,≥, ν) with T := T ′ ∪ {v1, . . . , vn}, v1 > v2 > . . . > vn and
vi > v for each i = 1, . . . , n and v ∈ T ′, and ν := ν′ ∪ {(v1, l1), . . . , (vn, ln)}.
That is, T is obtained by placing the chain l1 l2 . . . ln above T′.
Substitution: Let T1,T2 be labeled trees and S := (S,≥s, νs) a subtree of T1.
Then T := T1[T2 /S] denotes the labeled tree obtained from T1 when S is
substituted by T2. Formally, we set T := (T,≥, ν) with T := (T1 − S) ∪ T2,
≥:=≥1

∣∣
T1−S

∪ ≥2 ∪{(w1, w2) | w1 > v, w1 ∈ T1 − S, w2 ∈ T2}, and ν :=
ν1

∣∣
(T1−S)

∪ ν2.
Composition: Let l ∈ L be a label and T1,T2 be labeled trees. Then l(T1,T2)
denotes the labeled tree T := (T,≥, ν) , where we have T := T1 ∪ T2 ∪ {v} for a
fresh node v, ≥:=≥1 ∪ ≥2 ∪({v} × (T1 ∪ T2)), and ν := ν1 ∪ ν2 ∪ {(v, l)}. That
is, T is the tree having a root labeled with l and having T1 and T2 as subtrees.

Using these operations, we can now define the tree-style syntax for ALC.
Definition 1 (ALC-Trees). Let a vocabulary (A,R) be given with > ∈ A.
Let ‘u’ and ‘¬’ be two further signs. Let (∆I , I) be a interpretation for the
vocabulary (A,R). We inductively define the elements of ALCTree as labeled
trees T := (T,≥, ν), as well as the interpretation I(T) of T in (∆I , I).
Atomic Trees: For each A ∈ A, the labeled tree A (i.e. the tree with one node
labeled with A), as well as > are in ALCTree. We set I(A) = AI and I(>) = ∆I .
Negation: Let T ∈ ALCTree. Then the tree T′ := ¬T is in ALCTree. We set
I(T′) = ∆I − I(T).

4

Conjunction: Let T1,T2 ∈ ALCTree. Then the tree T := u(T1,T2) is in
ALCTree. We set I(T) = I(T1) ∩ I(T2).
Exists Restriction: Let T ∈ ALCTree, let R be a role name. Then T′ := RT
is in ALCTree. We set I(T′) = {x ∈ ∆I | ∃y ∈ ∆I : xRy ∧ y ∈ I(T)}.

The labeled trees of ALCTree are called ALC-trees. Let T := (T,≥, ν) ∈
ALCTree. An element v ∈ T respectively the corresponding subtree Tv is said to
be evenly enclosed, iff |{w ∈ T | w > v and ν(w) = ¬}| is even. The notation
of oddly enclosed is defined accordingly.

Of course, ALC-trees correspond to the formulas of ALC, as they are defined
in the usual linear fashion. For this reason, we will sometimes mix the notation of
ALC-formulas and ALC-trees. Particularly, we sometimes write T1 uT2 instead
of u(T1,T2). Moreover, the conjunction of trees can be extended to an arbitrary
number of conjuncts, i.e.: If T1, . . . ,Tn are ALC-trees, we are free to write
T1 u . . . uTn. We agree that for n = 0, we set T1 u . . . uTn := >.

Next, a diagrammatic representation of ALC-trees in the style of Peirce’s
RGs is provided. As ALC-concepts correspond to FOL-formulas with exactly
one free variable, we we assign to each ALC-tree T a corresponding RG Ψ(T)
with exactly one (now unnumbered) query marker. Let A be an atomic concept,
R be a role name, let T, T1, T2 be ALC-trees where we already have defined
Ψ(T) = ? G , Ψ(T1) = G? 1, and Ψ(T2) = G? 2, respectively. Now Ψ
is defined inductively as follows:

Ψ(>) := ? Ψ(A) := ? A Ψ(RT) := R? G

Ψ(T1 uT2) :=
G2

G1? Ψ(¬T) := ? G

Considering our HappyMan-example given in the introduction, the corre-
sponding ALC-tree, and a corresponding RG, is provided below. The rules of the
forthcoming calculus can be best understood to be carried out on Peirce RGs.

Man

Male
hasChild Female

hasChild

RichHappy

hasChild

Female

Male

Man?

Rich

Happy
hasChild

hasChild

hasChild

It might be argued that having only constructors for conjunction, negation
and existential restriction is a downside of this system. Although we argued in the
introduction that diagrams are easier to comprehend than the symbolic notation
for DLs, reading the diagrams also requires effort. Some reading heuristics help

5

in the understanding RGs. For example, subgraphs of the form

GR
G

G

1

2

are literally read . . .¬∃R.¬C and . . .¬(¬C1 u ¬C2), respectively, but it is more
convenient to read them as ∀∃R.C resp., C1tC2. Shin [4] coined the term multiple
reading for this approach. In her book, she elaborates this for EGs by proving
a translation from EGs to FOL that assigns to each EG a set of (equivalent)
FOL-formulas (unfortunately, her translations are slightly flawed: see [17] for a
discussion and correction of her reading algorithm). Shin argues thoroughly in
[4] that this multiple reading is a unique feature of the Peirce’s graphs, a feature
that distinguishes them from the usual symbolic notation in mathematical logic.
This feature is not a drawback, but an advantage of Peirce’s system.

Finally, we define semantic entailment between ALC-trees.

Definition 2 (Semantics). Let T ⊆ ALCTree and let T ∈ ALCTree. We set

T |= T :⇐⇒
⋂
i∈I

I(Ti) ⊆ I(T) for each interpretation (∆I , I)

For I = ∅, we set
⋂

i∈I I(Ti) := ∆I for the respective model, and write |= T. For
|I| = 1, we write T′ |= T, omitting the curly set brackets, or we write T′ v T
(adopting the common DL-notation), and we say that that T′ subsumes T resp.
that T is subsumed by T′.

4 The Calculus for ALCT ree

Peirce provided a set of five rules for the system of existential graphs, termed
erasure, insertion, iteration, deiteration, double cut. They form a sound and
complete diagrammatic calculus for EGs. Moreover, they can be extended for
the system of Relational Graphs (RGs).

The class of RGs corresponding to ALC is a fragment of the full system of
RGs. Naturally, the rules for RGs are still sound rules for the ALC-fragment,
but it is less clear whether these rules remain complete. For two graphs G1, G2

of the ALC-fragment with G1 |= G2, we have a proof for G1 ` G2 within the
full system of RGs, but it might happen that the proof needs graphs that do not
belong to the ALC-fragment. In the calculus we provide we require additional
rules of this type. Besides trivial rules, like rules that capture the associativity of
conjunction, we need special rules for handling roles. The rules iteration of roles
into even and deiteration of roles from odd are the most important examples.

Next in the presentation the Peirce style rules for ALCTree are provided.
These rules transform a given ALC-tree into a new ALC-tree. In order to make
the calculus more understandable, we provide, within the rule definitions, some
examples and diagrams illustrating them. For each rule name we provide an
abbreviation that will be used in the proofs.

6

Definition 3 (Calculus). The calculus for ALC-Trees over a given vocabulary
(A,R) consists of the following rules:
Addition and Removal of > (>-add. and >-rem.): Let T be an ALC-
tree, let S ⊆ T be a subtree. For T′ := T[S u > /S] we set T a` T′ (T a` T′

abbreviates T ` T′ and T′ ` T). We say that T′ is derived from T by adding
a >-node, and T is derived from T′ by removing a >-node. For the Peirce
graphs, this rule corresponds to adding or removing a branch to/from a heavily
drawn line. A simple example is given below. These rules are ”technical helper”
rules that will be often combine with other rules that add or remove subtrees.

? R C
>-add

` ? R C
>-rem

` ? R C

Addition and Removal of Roles (R-add. and R-rem.): Let T be an ALC-
tree with a subtree S ⊆ T. Let R be a role name. Then for T[¬R¬> />] we set
T a` T′. We say that T′ is derived from T by adding the role R, and T is
derived from T′ by removing the role R. An example for this rule is given
below. Due to the symmetry of the rules, the inverse direction is a proof as well.

? C >-add

`
? C R-add

`
? C

R

Associativity of Conjunction (conj.): Let T be an ALC-tree with a subtree
S1 u (S2 u S3). For T′ := T[(S1 u S2) u S3 /S1 u (S2 u S3)] we set T a` T′.
We say that T′ is derived from T resp. T is derived from T′ by using the
associativity of conjunction.
Addition and Removal of a Double Negation (dn): Let T := (T,≥, ν)
be an ALC-tree, let S ⊆ T be a subtree. Then for T′ := T[¬¬S /S] we set
T a` T′. We say that T′ is derived from T by adding a double negation
and T is derived from T′ by removing a double negation.

Consider the four graphs below. The second and the third graph can be derived
from the first by adding a double negation. Inferences in the opposite direction
can also be carried out. The fourth graph is a result of adding a double negation
in the general theory of RGs, but in the system of ALC-trees, this is even not a
diagram of an ALC-tree, as the cuts cross more than one heavily drawn line.

? C
D

? C

D

?
D
C ?

D
C

Erasure from even, Insertion into odd (era. and ins.): Let T := be an
ALC-tree with a positively enclosed subtree S ⊆ T. Then for T′ := T[> /S]
we set T ` T′. We say that T′ is derived from T by erasing S from even.
Vice versa, let T = be an ALC-tree with an negatively enclosed subtree > ⊆ T.
Let S ∈ ALCTree. Then for T′ := T[S />] we set T ` T′. We say that T′ is
derived from T by inserting S into odd.

This is another set of rules that often hold together with the addition and
removal of >. Examples will be given later.

7

Iteration and Deiteration (it. and deit.): Let T := (T,≥, ν) be an ALC-
tree with with a subtree S := (S,≥S , νS) ⊆ T. Let s be the greatest element of S,
let t be the parent node of s in T. Let ν(t) = u, let v ∈ T be a node with v < t,
v /∈ S, ν(v) = >, such that for each node w with t > w > v we have ν(w) = ¬ or
ν(w) = u. Then for T′ := T[S />] we set T a` T′. We say that T′ is derived
from T by iterating S and T is derived from T′ by deiterating S.

Iteration and Deiteration often combine with the addition and removal of >,
and they are the most complex rules. Consider the following six Peirce graphs.
The second and the third graph can be derived from the first graph by iterating the
subgraph R1 C1? (preceded by the >-addition rule). The next three graphs

are not results from the iteration rule. In the fourth graph, the condition that
ν(w) = ¬ or ν(w) = u holds for each node w with t > w > v is violated. The
fifth graph violates v < t. Finally, the sixth graph violates v /∈ S.

R1 C1

R2 C2

? R1 C1

R2 C2

R1 C1

? R1 C1

R2 C2

R1 C1

?

R1 C1

C2R2

R1 C1

? R1 C1

R2 C2
R1

C1

?

R1 C1

R1 C1

R2 C2

?

Iteration of Roles into even, Deiteration of Roles from odd (R-it. and
R-deit.): Let T be an ALC-tree. Let Sa,Sb,S1,S2 be ALC-trees with Sa :=
RS1 u ¬RS2 and Sb := R(S1 u ¬S2). If Sa ⊆ T is positively enclosed, for
T′ := T[Sb /Sa] we set T ` T′, and we say that T′ is derived from T by
deiterating the role R from odd. Vice versa, if Sb ⊆ T is negatively
enclosed, for T′ := T[Sa /Sb] we set T ` T′, and we say that T′ is derived
from T by iterating the role R into even. Below a simple example is
provided.

R

R

? 1C

C2

R-deit

`
R? 1

C

C

2

Definition 4 (Proof). Let Ta,Tb be two ALC-Trees. A proof for Ta `
Tb is a finite sequence (T1,T2, . . . ,Tn) with Ta = T1, Tb = Tn, where each
Ti+1 is obtained from Ti by applying one of the rules of the calculus. Let T
be a set of ALC-Trees and let T be an ALC-Tree. We set T ` T if and only if
there are T1, . . . ,Tn ∈ T with T1 u . . . uTn ` T

As proved in [14], the calculus is sound and complete.

Theorem 1 (Soundness and Completeness). Let T be a set of ALC-Trees
and let T be an ALC-Tree. Then we have T |= T ⇐⇒ T ` T .

8

5 Metarules and Examples

In this section we firstly present two helpful metarules and then some examples
to illustrate the Peirce-style calculus for ALC.

Each rule of the calculus is basically the substitution of a subtree of a given
ALC-tree by another subtree. Each rule can be applied to arbitrarily deeply
nested subtrees. Moreover, if we have a rule that can be applied to positively
enclosed subtrees, then we always have a rule in the converse direction that
can be applied to negatively enclosed subtrees (and visa versa). Due to these
structural properties of rules, we immediately obtain the following helpful lemma
(adapted from [9]).

Lemma 1 (Cut-and-Paste). Let Sa,Sb be two ALC-trees with Sa ` Sb. Let
T be an ALC-tree. Then if Sa ⊆ T is a positively enclosed subtree of T, we
have T ` T[Sb /Sa]. Visa versa, if Sb ⊆ T is negatively enclosed, we have
T ` T[Sa /Sb].

An immediate consequence of the lemma is: If we have two ALC-trees Ta,Tb

and if (T1, . . . ,Tn) is a proof for Ta ` Tb, then (¬Tn, . . . ,¬T1) is a proof for
¬Tb ` ¬Ta. This will be used later.

For ALC, the full deduction theorem holds.

Theorem 2 (Deduction Theorem). Let T be a set of ALC-trees, let T1,T2

be two ALC-trees. Then we have T ∪ {T1} ` T2 ⇐⇒ T ` ¬(T1 u ¬T2) .

Proof: See [14]
In the following, some examples that correspond to distributing quantifiers in

ALC-concepts are provided. We start by moving existential quantifiers inwardly,
when followed by a conjunction. In the symbolic notation of ALC, we have the
following subsumption relation: ∃R.(C1uC2) v ∃R.C1u∃R.C2. A proof for this
relation by means of ALC-trees is given below. In this and the next proof we
assume Ψ(C1) = G? 1 and Ψ(C2) = G? 2.

G
R?

G
1

2

it

` ?

G
G

R

G
G

R

1

2

1

2

2× era

` ?

G
R

G
R

1

2

2×>-rem

` ? R G
R G

1

2

Next, we consider the equivalence of ∀R.(C1 uC2) and ∀R.C1 u∀R.C2. Below, a
formal proof with Peirce’s graphs is provided. The first and the (identical) last
graph correspond to the concept ∀R.(C1uC2), and the fourth graph corresponds
to the concept ∀R.C1 u ∀R.C2. So the first three steps prove the subsumption
relation ∀R.(C1 u C2) v ∀R.C1 u ∀R.C2, and the last six steps prove the sub-
sumption relation ∀R.C1 u ∀R.C2 v ∀R.(C1 u C2).

As we have already said, the deiteration-rule and the erasure rule are usually
followed by the >-removal rule, and conversely, the iteration rule and the inser-
tion rule are usually preceded by the >-addition rule. In the proof, these two
steps are combined without explicitly mentioning the >-removal/addition rule.

9

G1
G2

? R
it

`

G2

G1

G2

G1

?

R

R
era

`
G1

G2

G1

?

R

R

era

` ?

R

R G

G1

2

ins

`

R

R

?

G

G

G1

2

2

it

`

G2

G1

G2

G2R

R

?
dn

`

G1
G2

G2

G2R

R

?
R-it

`

G1
G2

G2

G2R

R

R

?

deit

`

G1
G2

G2R

R

?
era

` G1
G2

? R

A similar example is the equivalence of ∃R.(C1 t C2) and ∃R.C1 t ∀R.C2.
Compared to the previous example, we exchanged the quantifiers ∀ and ∃ and
the junctors u and t. The symmetry of these examples is (thanks to Lem. 1),
reflected by the calculus. The proof for ∃R.(C1 t C2) v ∃R.C1 t ∀R.C2 is
given below. In order to render this proof more understandable, we now set
Ψ(C1) = H? 1 and Ψ(C2) = H? 2. The interesting part of the proof is the
middle step, i.e., (∗). According to the remark after Lem. 1, we can carry out the
last 6 steps in the previous proof in the inverse direction, if each graph in this
proof is additionally enclosed by a cut (then the proof consists of the rules inser-
tion, deiteration, R-deiteration, double negation, deiteration and erasure). When
we replace in this proof each subgraph G? 1 by H? 1 and each subgraph

G? 2 by H? 2 , we obtain the proof for (∗). The steps before and after (∗)
are simple helper steps in order to add or remove some double negations.

H2

R?
H1 dn

`
H2

R
H1

?
(∗)
`

H2

H1

R

R

?
dn

`
H1

H2

?
R

R

We see that the the proof for ∃R.(C1 t C2) v ∃R.C1 t ∀R.C2 is essentially the
inverse direction of the proof for ∀R.C1 u ∀R.C2 v ∀R.(C1 u C2). The proof for

10

∃R.C1 t ∀R.C2 v ∃R.(C1 t C2) can be obtained similarly from the proof for
∀R.(C1 u C2) v ∀R.C1 u ∀R.C2. This shows some benefit of the symmetry of
Peirce’s rules.

The final example, the mad cow ontology, is a popular example for ALC-
reasoning. Consider the following ALC-definitions:

Cow ≡ Animal u V egetarian Sheep ≡ Animal u hasWool
V egetarian ≡ ∀eats.¬Animal MadCow ≡ Cow u ∃eats.Sheep

A question to answer is whether this ontology is consistent. Such a question can
be reduced to rewriting the ontology to a single concept MadCow ≡ Animal u
∀eats.¬Animalu∃eats.(AnimaluhasWool) and investigate whether this concept
is satisfiable, i.e., whether there exists as least one interpretation where this
concept is interpreted by a non-empty set. We will show that this is not the case
by proving with our calculus that the concept entails the absurd concept. The
proof is given below. Again, each application of the erasure-rule is followed by
an application of the >-removal rule (although this is not explicitly mentioned
in the proof).

eats Animal

hasWool

eats Animal

Animal

?

2× era

`

eats Animal

eats Animal

?

deit

`
eats Animal

?

era

`

?

We started with the Peirce graph for the given concept and derived the absurd
concept, thus the ontology is not satisfiable. The madcow ontology is therefore
inconsistent and this is proved using the calculus developed,

6 Conclusion and Further Research

This paper provides steps toward a diagrammatic representation of DLs, in-
cluding importantly diagrammatic inference mechanisms. To the best of our
knowledge this is the first attempt to providing diagrammatic reasoning facili-
ties for DLs. The results presented in this paper show promise in investigating
RGs further as diagrammatic versions of corresponding DLs.

The approach taken can also be extended to other variants of DL. For in-
stance, a major task is to incorporate individuals, or number restrictions (either
unqualified or qualified). Similarly, constructors on roles, like inverse roles or role
intersection, have also to be investigated.

In the long term, our research advocates developing a major subset of DL as
a mathematically precise diagrammatic reasoning system. While the intention
is to render DLs more user-friendly through a diagrammatic correspondence,
diagrammatic systems need to be evaluated against the traditional textual form
of DL in order to measure readability improvement. Cognition and usability
experiments with such a evaluation in mind are planned as future work.

11

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
In Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: Description Logic Handbook, Cambridge University Press (2003)

2. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science 11(1) (1987) 65–100

3. Shimojima, A.: On the Efficacy of Representation. PhD thesis,
The Department of Philosophy, Indiana University (1996) Available at:
http://www.jaist.ac.jp/ ashimoji/e-papers.html.

4. Shin, S.J.: The Iconic Logic of Peirce’s Graphs. Bradford Book, Massachusetts
(2002)

5. Gaines, B.R.: An interactive visual language for term subsumption languages. In:
IJCAI. (1991) 817–823

6. Kremer, R.: Visual languages for konwledge representation. In: Proc. of 11th
Workshop on Knowledge Acquisition, Modeling and Management (KAW’98) Banff,
Alberta, Canada, Morgan Kaufmann (1998)

7. Nosek, J.T., Roth, I.: A comparison of formal knowledge representation schemes as
communication tools: Predicate logic vs semantic network. International Journal
of Man-Machine Studies 33(2) (1990) 227–239

8. Coupey, P., Faron, C.: Towards correspondence between conceptual graphs and
description logics. In Mugnier, M.L., Chein, M., eds.: ICCS. Volume 1453 of LNAI.,
Springer, Berlin – Heidelberg – New York (1998) 165–178

9. Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Addison-Wesley, Reading, Mass. (1984)

10. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of owl dl on-
tologies using uml. In McIlraith, S.A., Plexousakis, D., van Harmelen, F., eds.:
International Semantic Web Conference. Volume 3298 of Lecture Notes in Com-
puter Science., Springer, Berlin – Heidelberg – New York (2004) 198–213

11. Stapleton, G.: Reasoning with Constraint Diagrams. PhD
thesis, Visual Modelling Group, Department of Mathemat-
ical Sciences, University of Brighton (2004) Available at:
http://www.cmis.brighton.ac.uk/Research/vmg/GStapletonthesis.html.

12. Stapleton, G., Howse, J., Taylor, J.: Spider diagrams. LMS Journal of Computation
and Mathematics 8 (2005) 145–194

13. Zeman, J.J.: The Graphical Logic of C. S. Peirce. PhD thesis, University of Chicago
(1964) Available at: http://www.clas.ufl.edu/users/jzeman/.

14. Dau, F., Eklund, P.: Towards a diagrammatic reasoning system for description
logics. Submitted to the Journal of Visual Languages and Computing, Elsevier.
Available at www.kvocentral.org. (2006)

15. Burch, R.W.: A Peircean Reduction Thesis: The Foundation of Topological Logic.
Texas Tech. University Press, Texas, Lubbock (1991)

16. Pollandt, S.: Relation graphs: A structure for representing relations in contextual
logic of relations. In Priss, U., Corbett, D., Angelova, G., eds.: Conceptual Struc-
tures: Integration and Interfaces. Volume 2393 of LNAI., Borovets, Bulgaria, July,
15–19, Springer, Berlin – Heidelberg – New York (2002) 24–48

17. Dau, F.: Fixing shin’s reading algorithm for peirce’s existential graphs. In Barker-
Plummer, D., Cox, R., Swoboda, N., eds.: Diagrams. Volume 4045 of LNAI.,
Springer, Berlin – Heidelberg – New York (2006) 88–92

12

