
RDF as Graph-Based, Diagrammatic Logic

Frithjof Dau

Dept. of Mathematics, Dresden Technical University, Germany

Abstract. The Resource Description Framework (RDF) is the basic
standard for representing information in the Semantic Web. It is mainly
designed to be machine-readable and -processable. This paper takes the
opposite side of view: RDF is investigated as a logic system designed
for the needs of humans. RDF is developed as a logic system based on
mathematical graphs, i.e., as diagrammatic reasoning system. As such, is
has humanly-readable, diagrammatic representations. Moreover, a sound
and complete calculus is provided. Its rules are suited to act on the
diagrammatic representations. Finally, some normalforms for the graphs
are introduced, and the calculus is modified to suit them.

1 Introduction: RDF and Graphs

The Resource Description Framework (RDF) is the basic standard for represent-
ing information in the Semantic Web. The information is encoded in statements,
which are subject-predicate-object triples of information. RDF can be seen from
two perspectives: computers and humans. For computers, it is important that
RDF is a machine processable data-format. Thus, much effort is spent on spec-
ifications which suit this purpose (e.g. RDF/XML). An approach to make RDF
accessible for humans can already be found in the RDF-primer [8], where the
set of triples is converted into a mathematical graph: The subjects and objects
of all statements are mapped to vertices, and each statement is mapped to a
directed edge between its subject and object, labeled by its predicate. Consider
the following set of triples T1 and its representation as graph:

(Ernst,paints,hist. naturelle),(Ernst,paints,flying geese),

(Ernst,paints,le soleil),(hist. naturelle,has style,surrealism),

(flying geese,has style,dadaism),(le soleil,has style,dadaism)

histoire naturelle
flying geese
le soleil

paints
paints

paints

has_style

has_style

has_style dadaism
dadaism
surealism

Ernst

The translation of triple set to these graphs is appealing, but is has two problems.
RDF allows a statement predicate to appear as the subject of another state-

ment. E.g., {(type type prop), (subject type prop)} is a well-formed set of
triples, but it cannot be transformed to a graph with the conventions of [8].
The first goal of the paper is closes the gap that not all triple sets can be repre-
sented as graphs. For this, we adopt the approach of [1, 2] instead: RDF triple
sets are translated to hyper graphs, where subjects, objects, and predicates are

mapped to vertices, and each statement (s, p, o) is mapped to an 3-ary hyperedge
linking these vertices.

RDF is used for information-processing. In [3] an entailment relation between
triple sets is introduced. But this relation does not the diagrammatic represen-
tation of RDF. It is well accepted that diagrams are often easier to comprehend
than symbolic notations ([7, 6]). The second goal of the paper is, after adopting
the semantics of [3], to provide an adequate diagrammatic calculus.

In this understanding, RDF is developped as diagrammatic reasoning system
(DRS), in a humanly readable and mathematically precise manner. In the next
sections, an overview of the syntax, semantics, a sound and complete calculus,
and some normalforms of RDF Graphs for RDF as DRS is provided. Due to
space limitations, some formal definitions an all proofs are omitted. They can
be found in a technical report on www.dr-dau.net.

2 Syntax

In this section we define the syntax of the system, starting with the vocabulary.

Definition 1. Let Blanks := { 1, 2, 3, . . . , } be a set of so-called blanks. A
triple Voc := (URIs,TypedLit,PlainLit) is called vocabulary. The elements of
these sets are called universal resource identificators, typed literals,
and plain literals, resp. We set Lit := TypedLit ∪ PlainLit. The elements of
Lit are called literals. The elements of URIs ∪ TypedLit ∪ PlainLit are called
names. We assume that Blanks, URIs, TypedLit, PlainLit are pairwise disjoint.

Next we define the well-known triple notation of RDF as well as the corre-
sponding mathematical graphs. To avoid confusion, we use the term RDF triple
set instead of the common term RDF graph for the triple notation.

Definition 2. An RDF triple set over Voc is a set of triples (s, p, o) with
s ∈ URIs ∪ Blanks, p ∈ URIs, o ∈ URIs ∪ Blanks ∪ Lit. We call s the subject, p
the property and o the object of the triple.

A structure (V,E, ν, κ) is an RDF Graph over Voc iff V and E are finite
sets of vertices and edges, ν : E → V 3 is a mapping such that each vertex
is incident with as least one edge, and κ : V → Voc is a mapping such that
for each e ∈ E, we have κ(e

∣∣
1
) ∈ (URIs ∪ Blanks), κ(e

∣∣
2
) ∈ URIs, and κ(e

∣∣
3
) ∈

(URIs ∪ Blanks ∪ Lit). For e ∈ E with ν(e) = (v1, v2, v3) we will often write
e = (v1, v2, v3), and each vi, i = 1, 2, 3 is denoted by e

∣∣
i
. For v ∈ V we set Ev :=

{e ∈ E | ∃ i.ν(e)
∣∣
i

= v}, and for e ∈ E we set Ve := {v ∈ V | ∃ i.ν(e)
∣∣
i

= v}.
The set {bl ∈ Blanks | ∃v ∈ V : κb(v) = bl} is called the set of blanks of G.

Compared to RDF triple sets, RDF graphs provide a richer means to express in
different ways some given amount of information, and predicates which appear as
the subject of other statements do not cause problems. This shall be exemplified
with the first four axiomatic triples from the RDF-semantics (see [3]). They are:

(rdf:type rdf:type rdf:Property) (rdf:subject rdf:type rdf:Property)

(rdf:predicate rdf:type rdf:Property) (rdf:object rdf:type rdf:Property)

2

Note that type occurs both as subject and as predicate in these triples, so
these four triples cannot be displayed due to the graph-drawing conventions of
[5]. But with the herein defined RDF graphs, there are now different possibilities
to transform this set of triples to a graph. Three of them are depicted below.

1) rdf:subject

rdf:type

rdf:Property
p

os

rdf:type

rdf:Property
p

osrdf:object

rdf:predicate

rdf:type

rdf:Property
p

os

rdf:type

rdf:type

rdf:Property
p

os

2) rdf:subject

rdf:predicate

rdf:object

rdf:type

rdf:Property

s

s

s
o
o
o

p

p
p

o

ps
3)

rdf:subject

rdf:predicate

rdf:object

rdf:type rdf:Property

rdf:types

s

s

s

p
p
p
p

o

o
o
o

In the first graph, each vertex is incident exactly once with an edge: It has so-
to-speak a maximum number of vertices. Graphs which satisfy this conditions
will be said to be in anti-normal-form (ANF). For the third graph, we have
an opposite situation: No different vertices are labeled the same, i.e., this graph
contains the minimal number of vertices. Such graphs are said to be in normal-
form (NF). For graphs in ANF or NF, we assume moreover that they do not
have redundant edges, i.e., for all edges e = (v1, v2, v3) and f = (w1, w2, w3)
with κ(vi) = κ(wi) for i = 1, 2, 3, we have e = f .

Let T be an RDF triple set over Voc. Then let ΦN (T) := (V,E, ν, κ) be the
following RDF graph in NF: For each name or blank x in T , let vx be fresh1

vertex. Let V be the set of these vertices. Let E := T . For e = (s, p, o) ∈ E,
let ν(e) = (vs, vp, vo). For v = vx ∈ V , let κ(vx) := x. Similarly, let ΦAN (T) :=
(V,E, ν, κ) be the following RDF graph in ANF: For each edge e = (s, p, o) ∈ E,
let es, ep, eo be fresh vertices. Let V be the set of these vertices, let E := T , and
for e = (s, p, o) ∈ E, let ν(e) := (es, ep, eo). For v = ex ∈ V , we set κ(vx) := x.

Now let G := (V,E, ν, κ) be an RDF Graph. Let Ψ(G) be the following RDF
triple set: Ψ(G) := {

(
κ(e

∣∣
1
), κ(e

∣∣
2
), κ(e

∣∣
3
)
)
| e ∈ E} .

Each RDF graph in NF resp. in ANF is already been sufficiently described
by the set of triples

(
κ(e

∣∣
1
), κ(e

∣∣
2
), κ(e

∣∣
3
)
)

with e ∈ E. If T is an RDF triple
set, we have T = Ψ(ΦN (T)) and T = Ψ(ΦAN (T)). Vive versa: If G is an RDF
graph in NF, we have G = ΦN (Ψ(G)), and if G is an RDF graph in ANF, we
have G = ΦAN (Ψ(G)). So the mappings ΦN , ΦAN and Ψ can be understood as
translations between graphs in NF or ANF and triple sets.

A subgraph of an RDF triple set is simply a subset. A subgraph of an
RDF graph (V,E, ν, κ) is an RDF Graph (V ′, E′, ν′, κ′) with V ′ ⊆ V , E′ ⊆ E,
ν′ = ν

∣∣
E′ and κ′ = κ

∣∣
V ′ . If we have moreover Ev ⊆ E′ for each v ∈ V ′, the

subgraph is called closed.
1 A vertex or edge x is called fresh iff it is not already an element of the set of vertices

and edges we consider.

3

We will implicitly identify RDF Graphs if they differ only in the names of
the occurring blanks. As in [3], graphs like these are called equivalent.

Finally, we have to define the join and merge of RDF graphs. The join
of RDF triple sets in defined in [3] to be the set-theoretical union. But only if
the joined RDF triple sets have no blanks in common, their join corresponds to
their logical conjunction. Then one speaks of the merge of the RDF triple sets.
Analogously, if Gi := (Vi, Ei, νi, κi) is for i = 1, . . . , n an RDF graph such that
that all Vi and Ei, i = 1, . . . , n, are pairwise disjoint, the join of the graphs
Gi is defined to be the RDF graph G := (V,E, ν, κ) with V :=

⋃
i Vi, E :=

⋃
i Ei,

ν :=
⋃

i νi and κ :=
⋃

i κi. If the set of blanks of the graphs Gi are pairwise
disjoint, the join of the graphs Gi is also called merge of the graphs Gi.

3 Semantics

In this section, the semantics for RDF graphs is defined. It is based on mathe-
matical model theory and adopted from [3, 4] for RDF triple sets.

Definition 3. A model I for Voc := (URIs, TypedLit, PlainLit) is a struc-
ture (IR, IP, IEXT, IS, IL) where IR is a set of resources, called the domain or
universe of I, IP is a set of properties of I, IEXT : IP → P(IR × IR) is a
mapping, IS : URIs → IR ∪ IP is a mapping, and IL : Lit → IR is a mapping.

Note that the relationship between IR and IP is not specified. From the view-
point of mathematical logic, one would assume that IR and IP are disjoint. From
the RDF viewpoint, it is quite normal to assume that IP ⊆ IR holds. Both cases
and arbitrary other relations between IR and IP are allowed.

In the next definition, RDF graphs are evaluated in models. We do not assume
that the graph and model are based on the same vocabulary. But if a name in a
graph is not interpreted in the model, the semantics will always yield that the
graph evaluates to false. Thus we will usually assume that the vocabularies of a
graph and an interpretation are the same.

Definition 4. Let G := (V,E, ν, κ) be an RDF graph over VocG and let I :=
(IR, IP, IEXT, IS, IL) be an interpretation over VocI . A function I : V → IR is an
interpretation function (for G in I), iff for all v1, v2 ∈ V with κ(v1) =
κ(v2), we have I(v1) = I(v2), and for each each name n ∈ URIsI ∪ PlainLitI ∪
TypedLitI and each vertex v ∈ V with κ(v) = n, we have I(v) = (IL ∪ IR)(n).

We say the graph G holds in the model I and write I |= G, iff for each
v ∈ V , κ(v) is a name of VocI or a blank, and there exists an interpretation
function I : V → IR such that for each edge e = (v1, v2, v3) ∈ E and s := κ(v1),
p := κ(v2), o := κ(v3), we have (I(s), I(o)) ∈ IEXT(I(p)) and I(p) ∈ IP.

If Ga,Gb are RDF graphs such that I |= Gb holds for each I with I |= Ga, we
say that Ga (semantically) entails Gb, and write Ga |= Gb.

4 Calculus

We provide a calculus with five rules (which should be understood to manipulate
the diagrams of RDF graphs) for Gs. Let G := (V,E, ν, κ) be given.

4

Erasing an edge: Let e be an edge. Then e may be erased (and each vertex
v which is only incident with e has to be erased as well). That is, we construct
the graph Ge := (V e, Ee, νe, κe) with V (e) := V \{v ∈ Ve | v /∈ Vf for any f ∈
E with f 6= e}, E(e) := E\{e}, ν(e) := ν

∣∣
Ee , and κ(e) := κ|Ee.

Generalizing a label: Let bl ∈ Blanks be a blank which does not appear
in G. Let V ′ ⊆ V be a set of vertices which are identically labeled, i.e., we
have κ(v1) = κ(v2) for all v1, v2 ∈ V ′. Then, for each v ∈ V , κ(v) may be
replaced by κ(v) := bl. That is, we construct the graph Gg := (V,E, ν, κg) with
κg(w) := κ(w) for all w /∈ V ′ and κg(v) := bl for all w ∈ V ′.
Merging two vertices: Let v1 6= v2 be two vertices with κ(v1) = κ(v2). Then
v2 may be merged into v1 (i.e., v2 is erased and, for every edge e ∈ E, e

∣∣
i
= v2

is replaced by e
∣∣
i
= v1). That is, we construct the graph Gm := (V m, E, νm, κ)

with V m := V \{v2}, and for all e ∈ E and i = 1, 2, 3 we have νm(e)(i) := ν(e)(i)
, if ν(e)(i) 6= v2, and νm(e)(i) := v1 else.
Splitting a vertex: Let v1 be a vertex, incident with edges e1, . . . , en. Then
we can insert a fresh vertex v2 with κ(v2) := κ(v1), and on e1, . . . , en, arbitrary
occurrences of v1 may be replaced by v2. That is, we construct a graph Gi :=
(V i, E, νi, κ) with V m := V

.
∪ {v2}, for all e ∈ E and i = 1, 2, 3 we have

νm(e)(i) := ν(e)(i), if ν(e)(i) 6= v1 and νm(e)(i) ∈ {v1, v2} else, and which
satisfies Ev1 6= ∅ 6= Ev2 (otherwise the structure is not well-formed).
Iterating an edge: Let e be an edge with ν(e) = (v1, v2, v3). Then a fresh
edge e′ with ν(e′) := (v1, v2, v3) and κ(e′) := κ(e) may be inserted. That is, we
construct the graph Gi := (V,Ei, νi, κ) with E(i) := E

.
∪ {e′} and νi := ν

.
∪

{(e′, (v1, v2, v3))}.
Isomorphism: Two graphs which are isomorphic are implicitly identified.

A finite sequence (G1,G2, . . . ,Gn) such that each Gi+1 is derived from Gi by
applying one of the rules above is a proof. We say that Gn can be derived
from G1 and write Ga ` Gb. Two graphs Ga,Gb with Ga ` Gb and Gb ` Ga are
said to be provably equivalent. The calculus is adequate, i.e. we have:

Theorem 1. Two graphs Ga, Gb satisfy Ga ` Gb ⇔ Ga |= Gb

5 Restricting the Graphs to Normal Forms

We have seen that triple sets directly correspond to graphs in NF (or in ANF).
Thus the question arises whether we can use the results of the last sections,
particularly the sound- and completeness of the calculus, for the system of RDF
graphs in NF and the system of RDF graphs in ANF.

Clearly, the rules of the calculus are still sound if the system of graphs is
syntactically restricted. But assume we restrict ourselves to graphs in NF: It is
not allowed to split a vertex, as this yields a graph which is not in NF. Vice
versa, it is not possible to apply the rule ‘merging two vertices’: We never find
two different vertices which are identically labeled. Let us consider the following
valid entailment between two RDF triple sets: (o1 p o2) |= (o1 p o2), (1 p o2).
This entailment can directly translated to a valid entailment for graphs in NF or
in ANF, using the mappings ΦN or ΦAN . But in none of the restricted systems,

5

we can find a formal proof within the given calculus. So for each restricted
system, we have to alter the calculus to obtain completeness.

The rules ‘erasing an edge’ and ‘generalizing a label’ transform RDF graphs
in ANF into RDF graphs in ANF again. A third rule is obtained as follows: By
iterating an edge e and then splitting each of its three incident vertices, we can
obtain a copy of e with fresh vertices. The combination of these rules is called
iterating and isolating the edge e. This rule transforms RDF graphs in ANF into
RDF graphs in ANF, too. We will write Ga `an Gb, if Gb can be derived from Ga

with these three rules.
The rules ‘erasing an edge’ and ‘generalizing a label’ can be used for RDF

graphs in NF as well. If a graph Gb is derived from Ga by firstly splitting a vertex
v1 into v1 and a fresh vertex v2, and then by generalizing the label of v2, then
we say that Gb is derived from Ga by splitting and generalizing a vertex.
These three rules transform RDF graphs in NF into RDF graphs in NF. We will
write Ga `n Gb, if Gb can be derived from Ga with these three rules.

Theorem 2. Let Ga and Gb be two RDF graphs with Ga |= Gb. If both graphs
are in NF, we have Ga `n Gb. If both graphs are in ANF, we have Ga `an Gb.

6 Outlook

This paper is only a first step for developing the underlying logic of the Semantic
Web as mathematical DRS. The expressivity of RDF is rather weak. So, of
course, it has to be investigated how well-known extensions of RDF can be
developed as DRS. A paper which investigates how Description Logics, which are
the underying logics of the state-of-the-art SW-language OWL, is in preparation.

References

[1] J. Hayes: A Graph Model for RDF. Diploma thesis, Technis-
che Universität Darmstadt, Department of Computer Science, Germany,
http://purl.org/net/jhayes/rdfgraphmodel.html (2004)

[2] J. Hayes, C. Gutierrez: Bipartite Graphs as Intermediate Model for RDF. In:
Proceedings of ISWC 2004, LNCS 3298, Springer, 2004.

[3] P. Hayes: RDF Semantics: W3C Recommendation. 10 February 2004.
http://www.w3.org/TR/rdf-mt/

[4] P. Hayes, C. Menzel: A Semantics for the Knowledge Interchange Format. Pro-
ceedings of 2001 Workshop on the IEEE Standard Upper Ontology, August 2001.
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf

[5] G. Klyne, J.J. Carroll: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation.
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

[6] R. Kremer: Visual Languages for Konwledge Representation. Proc. of (KAW’98)
Banff, Morgan Kaufmann, 1998.

[7] J. H. Larkin H. A. Simon: Why a diagram is (sometimes) worth ten thousand
words. Cognitive Science, 11, 65-99.

[8] F. Manola, E. Miller: RDF Primer. http://www.w3.org/TR/rdf-primer/

6

