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Abstract. Traditional logic can be understood as the investigation of the
three main essential functions of thinking – concepts, judgements and con-
clusions. In the last years, in a new research field termed Contextual Logic, a
mathematical theory of this logic is elaborated. Concepts have already been
mathematically elaborated by Formal Concept Analysis. Judgements and
Conclusions can be expressed by so-called Concept Graphs, which are built
upon families of formal contexts.
There are two approaches to concept graphs: A semantical approach, which
investigates the theory of concept graphs in an algebraic manner, and a
logical approach, which focuses on derivation rules for concept graphs, rely-
ing on a separation between syntax and semantics. In [26], Wille introduced
two forms of complex implications (object implications and concept implica-
tions) to the semantical approach. In this paper it is investigated how these
implications can be incorporated into the logical approach.

1 Introduction and Basic Definitions

The traditional philosophical goal of logic is the investigation of the forms of think-
ing. I. Kant explained this understanding of logic as ”the theory of the three main
essential functions of thinking – concepts, judgements and conclusions”. In the last
years, a new research field termed Contextual Logic (CL) came up, where a mathe-
matical theory of traditional logic is elaborated. The understanding of concepts in
the line of traditional logic has already been adopted and successfully mathematized
by Wille’s Formal Concept Analysis (FCA), so the question of how to proceed with
judgements and conclusions arose.
John Sowa developed on the basis of Peirce’s Existential Graphs and the semantic
networks of artificial intelligence the theory of Conceptual Graphs (CGs). These
graphs are a diagrammatic system of logic whose purpose is ‘to express meaning in
a form that is logically precise, humanly readable, and computationally tractable’
(see [18]). Thus, conceptual graphs can considered to be formal representations
of judgements. Moreover, Sowa incorporated deduction rules into his system which
allow to obtain new graphs from given ones. Hence, this theory offers a formalization
of conclusions as well.
Both FCA and CGs have been used for knowledge representation and processing.
They have a common philosophical background, based on Peirce’s pragmatism.
Particularly, a main goal of both systems is the support of human, rational commu-
nication. Thus, for a mathematization of judgements and conclusions, associating
FCA and CGs turned out to be a promising approach.
The combination of FCA and CGs yields mathematically defined structures termed
Concept Graphs. The system of CGs is a very comprehensive and complex system,
not mathematically defined, and without sharp borders, thus it has been impossible
to develop a single system of Concept Graphs covering all features of CGs. Instead
of that, since Concept Graphs were introduced for the first time in [22], different
forms of concept graphs have been elaborated.
Most important for this paper is to distinguish two different accesses for a devel-
opment of concept graphs, namely semantical approaches, and those based on a



separation of syntax and semantics, termed syntactical approaches. In order to dis-
cuss this distinction accordingly, we first need some definitions. We start with the
underlying structures for (both approaches to) concept graphs.

Definition 1 (Relational Graphs with Cuts).
A structure (V,E, ν,>, Cut, area) is called a relational graph with cuts if

– V , E and Cut are pairwise disjoint, finite sets whose elements are called ver-
tices, edges and cuts, respectively,

– ν : E → ⋃
k∈NV

k is a mapping,1

– > /∈ V ∪ E ∪ Cut is a single element called the sheet of assertion, and
– area : Cut ∪ {>} → P(V ∪ E ∪ Cut) is a mapping such that

a) c1 6= c2 ⇒ area(c1) ∩ area(c2) = ∅ ,
b) V ∪ E ∪ Cut =

⋃
d∈Cut∪{>} area(d),

c) c /∈ arean(c) for each c ∈ Cut ∪ {>} and n ∈ N (with area0(c) := {c} and
arean+1(c) :=

⋃
{area(d) | d ∈ arean(c)}).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we set |e| := k and ν(e)
∣∣
i

:= vi.
Sometimes, we will write e

∣∣
i

instead of ν(e)
∣∣
i
, and e = (v1, . . . , vk) instead of ν(e) =

(v1, . . . , vk). We set E(0) := V and E(k) := {e ∈ E | |e| = k} for k > 0.
As for every x ∈ V ∪ E ∪ Cut we have exactly one context c ∈ Cut ∪ {>} with
x ∈ area(c), we can write c = area−1(x) for every x ∈ area(c), or even more
simple and suggestive: c = cut(x).
If Cut = ∅, we will speak simply of relational graphs, which can be identified with
the more simple structure G := (V,E, ν).

The contextual structures for both approaches to concept graphs are so-called power
context families (PCFs), i.e., families ~K := (K0,K1,K2, . . . ,Kn) of contexts Kk :=
(Gk,Mk, Ik) with G0 6= ∅ and Gk ⊆ (G0)k for each k = 1, . . . , n. The formal
concepts of Kk with k = 1, . . . , n are called relation concepts because their extents
are k−ary relations on the object set G0.
Semantical theories deal with the elaboration of a mathematical structure theory
of concept graphs of a given power context family in an algebraic manner. They are
defined as as follows:

Definition 2 (Semantical Concept Graphs).
A semantical concept graph of a power context family is a structure G := (V,E, ν, κ, ρ)
such that

1. (V,E, ν) is a relational graph without cuts,
2. κ : V

.
∪ E →

⋃
k∈N0

B(Kk) is a mapping with κ(u) ∈ B(Kk) for u ∈ E(k), and
3. ρ : V → G0 is a mapping such that ρ(v) ∈ Ext(κ(v)) for each v ∈ V , and

(ρ(e1), . . . , ρ(ek)) ∈ Ext(κ(e)) for each e = (v1, . . . , vk) ∈ E.

Semantical concept graphs are mathematical structures defined over a given PCF.
Then the forms and relations of those concept graphs are investigated. This in-
cludes operations on those graphs and a thorough study of the properties of the
corresponding algebra of concept graphs of a given power context family. This ap-
proach was proposed by Wille in [22], and since then, it was further elaborated by
himself, Pollandt and Schoolmann (see for instance [12, 13, 16]).
In the syntactical approach to concept graphs, the graphs are investigated with
methods known from mathematical logic. This approach has been investigated by
Prediger, Klinger, and Dau (see for instance [14, 15, 7, 8, 2]). In this paper, we will
focus on the approach of the author.
1 We set N := {1, 2, 3, . . .} and N0 := N ∪ {0}.



First of all, a separation between syntax and semantics is introduced. In order to do
this, first the notion of an alphabet is provided: An alphabet is a triple A := (G, C,R)
of disjoint sets G, C, R such that G is a finite set whose elements are called object
names, (C,≤C) is a finite ordered set with a greatest element > whose elements
are called concept names, and (R,≤R) is a family of finite ordered sets (Rk,≤Rk),
k = 1, . . . , n (for an n ∈ N) whose elements are called relation names. We suppose
that we have a special name .=∈ R2 which is called identity. Finally, let ≤G be the
order on G

.
∪ {∗} such that ∗ is the greatest element of G

.
∪ {∗}, and all elements of

G are incomparable.
Now we can obtain the concept with cuts graphs from relational graphs by labelling
the vertices and edges with names from our alphabet. For our purpose, we will
consider particularly (syntactical) concept graphs with cuts (CGwCs) (see [2]).

Definition 3 (Syntactical Concept Graphs with Cuts).
A structure G := (V,E, ν,>, Cut, area, κ, ρ) is called syntactical concept graph with
cuts over the alphabet A, if

– (V,E, ν,>, Cut, area) is a relational graph with cuts,2

– κ : V ∪E → C ∪R is a mapping such that κ(V ) ⊆ C, κ(E) ⊆ R, and all e ∈ E
with |e| = k satisfy κ(e) ∈ Rk, and

– ρ : V → G
.
∪ {∗} is a mapping.

In contrast to semantical concept graphs, the vertices and edges of a syntactical
concept graph are now labelled with names for objects and concepts. Thus, we have
no direct connection between graphs and PCFs. As usual in mathematical logic,
the connection is established by interpreting the names of the alphabet in models.
Therefore, in addition to PCFs, we need an interpretation. The resulting structures
are the models for the logical approach to concept graphs. The are given as follows:

Definition 4 (Contextual Models).
Let A := (G, C,R) be an alphabet and ~K be a power context family. Then we call
the disjoint union λ := λG ∪̇λC ∪̇λR of the mappings λG :G → G0, λC : C → B(K0)
and λR:R → R~K a ~K-interpretation of A if λC and λR are order-preserving, and
λC , λR satisfy λC(>) = >, λR(Rk) ⊆ B(Kk) for all k = 1, . . . , n, and finally,
(g1, g2) ∈ Ext(λR( .=)) ⇔ g1 = g2 for all g1, g2 ∈ G0. The pair (~K, λ) is called
contextual model over A or contextual structure over A.3

The focus of a logical investigation of concept graphs are derivation rules instead
of operations. Particularly for CGwCs, a sound and complete calculus is provided
in [2], to which we will refer in the remaining paper.
These two approaches are two different viewpoints on the same thing, thus they are
not competing, but complementary to each other.

2 Background Knowledge

We have already seen that the syntactical concept graphs are based on an alphabet
of which the names are ordered. This idea is adopted from the theory of Conceptual
Graphs, where this order is usually called type hierarchy. This order encodes pre-
knowledge on the concepts and relations we consider, thus, the type-hierarchy is how
2 An additional restriction is needed: (V,E, ν,>, Cut, area) must have so-called dominat-

ing nodes. Due to space limitations, a discussion of this is omitted here. The interested
reader is referred to [2].

3 The name ‘contextual structure’ is chosen according to the term ‘relational structure’,
which is common in first order logic.



background knowledge is incorporated into the system of Conceptual Graphs. The
type-hierarchy yields specific restrictions for models: The interpretation functions
λ have to respect the type-hierarchy. As a simple example, let us consider two
concept names C1, C2 with C1 ≤ C2. If these concept names are interpreted in a
contextual structure (~K, λ), we demand that λC(C1) ≤ λC(C2) is satisfied. That is,
∀g ∈ G0 : g ∈ Ext(λC(C1)) ⇒ g ∈ Ext(λC(C2)). Thus, C1 ≤ C2 can be understood
as an implication C1 → C2 as well.
In [25, 26], Rudolf Wille – inspired by Brandom’s elaboration of ‘material implica-
tions’ in [1] – introduced more complex implications as background knowledge to
semantical concept graphs. First of all, he allowed conjunctions of concepts in the
premises and conclusions of the implications (particularly, this approach is a gener-
alization of the type-hierarchy). Furthermore, he used this approach for implications
between objects as well. He considered the following implications:
For two given sets of objects(tuples) A,B ⊆ Gk in a PCF ~K := (K0, . . . ,Kn)
of contexts Kk = (Gk,Mk, Ik), a object implication A → B is given if we have
AIk ⊆ BIk . For two given sets of concepts C,D ⊆ B(Kk), a concept implication
C→ D is given if we have

∧
C ≤

∧
D. In the following, it will be investigated how

these kinds of implications can be integrated into the logical approach of concept
graphs.
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Sydney
Melbourne
Brisbane
Perth
Adelaide
Canberra
Hobart
Darwin
ACT
NSW
Vic
Qld
SA
WA
Tas
NT

ACT

population >1 mill.

WA
Perth

population >0.15 mill.

population >0.08 mill.

territory

NT

population >0.3 mill.

state

Tas

SA

state capital

Hobart Canberra

population >1.5 mill.

population >3 mill.

Adelaide

Brisbane Qld

Vic

NSW

population >6 mill.

population >4.5 mill.

Melbourne
Sydney

Darwin

administrative centre

Fig. 1. A PCF of Australian cities and states and its concept lattice

In order to exemplify object- and concept-implications, we adopt the example of
[25]. Consider the context of Australian cities and states and its concept lattice, both
depicted in Fig. 1. The state names are abbreviated by ACT (Australian Capital



Territory), NSW (New South Wales), Vic (Victoria), Qld (Queensland), SA (South
Australia), WA (Western Australia), Tas (Tasmania), and NT (Northern Territory)
(see [11]).
The following two implications are valid object implications in our example:

Tas→ SA and SA ∧ACT → Tas .

Let C denote the concept generated by the attributes administrative center and
population > 0.3 mill. The next two implications are valid concept implications:

µ(state capital)→ µ(administrative center) and

µ(state capital) ∧ C → µ(population > 1 mill) .

In [25], Wille defines the informational content of a semantical concept graph, and
he defines a graph Ga to be more specific than a graph Gb (which is denoted by Ga

<∼
Gb), if and only if the informational content of Gb is contained in the information
content of Ga. In the following picture, due to the second object implication, the
right concept graph is more specific than the left one (where TERRITORY stands
for the concept µ(territory)).

TERRITORY: Tas <
∼ TERRITORY: ACT TERRITORY: SA

Fig. 2. An example for dependencies of CGs due to an object implication

Analogously, due to the second concept implication, we have the following depen-
dency:

ADMINISTRATIVE CENTRE: Perth <
∼ C: PERTHSTATE CAPITAL: Perth

Fig. 3. An example for dependencies of CGs due to an concept implication

It should be briefly discussed why we focus on concept implications instead of at-
tribute implications, as they are known in FCA. As said above, concept graphs are
a main part of the program of Contextual Logic, of which the purpose is to de-
velop and elaborate a formal theory of the elementary logic, based on the doctrines
of concepts, judgements, and conclusions. Concept graphs are a formalization of
judgements. The most elementary judgements are of the form ”an object belongs
to the extension of a concept”, and these judgements correspond to the ”atomar”
items of concept graphs, namely concept boxes and relation ovals (relation ovals
represent elementary judgements where tuples of objects belong to the extension
of a relation-concept). For this reason, in the framework of Contextual Logic, it is
quite natural to elaborate concept implications instead of attribute implications.
Nonetheless, as each concept is generated by attributes, i.e., as each concept is the
meet of attribute concepts, concept implications can be in some sense reduced to
attribute implications. We will come back to this point in Sec. 5, where the results
of this paper are discussed.
As said above, Wille incorporated object- and concept-implications into his algebraic
understanding of concept graphs. The goal of this paper is to incorporate these
implications into the logical approach to concept graphs. In the remaining part of
this section, some basic ideas for doing this shall be described.



Obviously, an (object or concept) implication X → Y holds if each implication
X → y, y ∈ Y holds (the above examples are already of this type). Thus, it is suffi-
cient to consider only implications with a simple conclusion. Next, due to the sepa-
ration of syntax and semantics, we have to consider implication between names for
objects and concepts. Similar to the type hierarchy from which we obtained specific
restrictions of our models, these implications correspond to (further) restrictions of
our models as well. The implications can be now restated as follows: If g1, . . . , gn ∈ G
are object names, then g1 ∧ g2 ∧ . . . ∧ gn−1 → gn is called a (syntactical) object im-
plication. If C1, . . . , Cn ∈ C are concept names, then C1 ∧ C2 ∧ . . . ∧ Cn−1 → Cn is
called a (syntactical) concept implication. Note that we consider object implications
only for objects, not for tuples, and concept implications only for concept names,
not for relation names. The other cases can be handled analogously and are omitted
for sake of simplicity.
If an object implication g1 ∧ g2 ∧ . . . ∧ gn−1 → gn is given, we consider only
models M := (~K, λ) which respect this implication, i.e., models which satisfy
{λG(g1), . . . , λG(gn−1)}I0 ⊆ {λG(gn)}I0 . In other words:

M respects g1∧. . .∧gn−1 → gn iff γ(λG(g1))∨. . .∨γ(λG(gn−1)) ≥ γ(λG(gn)) (1)

Analogously, if a concept implication C1 ∧C2 ∧ . . .∧Cn−1 → Cn is given, we have:

M respects C1 ∧ . . . ∧ Cn−1 → Cn iff λC(C1) ∧ . . . ∧ λC(Cn−1) ≤ λC(Cn) (2)

If we understand a subsumption relation C1 ≤ C2 in a type hierarchy as an im-
plication C1 → C2, Eqn. (2) extends the conditions for models which respect a
type-hierarchy.
We have already seen that background knowledge yields specific restrictions for the
models. These restrictions have to be reflected by derivation rules, i.e., we have to
provide rules for the calculus which reflect exactly the background knowledge. For
example, the calculus should allow us to derive the left graph of Fig. 3 from the
right one. Analogously, the left graph of Fig. 2 should be derivable from the right
one.

3 General Logical Background

As already mentioned, the graphs in [2] are based on an alphabet of which the names
are ordered. Moreover, in [2], a sound and complete calculus for CGwCs is provided.
Particularly, this calculus has two rules (named ‘specialization’ and ‘generalization’)
which reflect the order of the names.
Object- and concept implications are more complex than an order on the set of
object- or concept names, that is, an order on the set of names can be reflected by
object- or concept implications, but not vice versa. Our goal is to incorporate these
kinds of implications into the theory of CGwCs. To be more specific: Instead of an
ordered alphabet of which the order is reflected by rules in the calculus, we will now
have an unordered alphabet, but a set of implications which has to be reflected by
the calculus. Of course, this calculus has not to be developed ‘from the scratch’: We
already have a sound and complete calculus for CGwCs, but without background-
knowledge in the form of object- or concept implications. These implications will be
incorporated by adding further rules to the calculus. It has to be checked whether
these additional rules correspond to the implications of our background knowledge.
In this section, a method for doing this will be described.
Our starting point are CGwCs which are based on a (non-ordered) alphabet. These
concept graphs are evaluated in contextual structures via the relation |=. Let us
denote the class of models for this kind of concept graphs by M1. In [2], a calculus



for these graphs is provided. Let us denote the set of rules by `1. (This use of
the symbol ‘`’ is a little bit sloppy: Usually, the symbol denotes the syntactical
entailment relation between formulas of a given logic, which is derived from a set of
rules. We will use ‘`’ in this sense as well, but the set of rules shall also be denoted
with ‘`’. It will be clear from the context which use of ‘`’ is intended.)
The basic idea is that further background knowledge corresponds to a restriction of
M1 (see the discussion above). So we get class of models M2 ⊆ M1. On the other
hand, we are looking for an extension of the set of rules which captures exactly the
background knowledge, i.e., we are looking for a calculus `2⊇`1.
Similar to the distinction between `1 and `2, we will distinguish between |=1 and
|=2 as follows: For two graphs Ga,Gb, we will write Ga |=i Gb if and only ifM |= Gb

for all models M∈Mi with M |= Ga.
Analogously, we define H `i G and H |=i G for a graph G and a set of graphs H.
The soundness and completeness of `1 can be now stated as follows:

Let G1,G2 two CGwCs. We have: G1 `1 G2 ⇐⇒ G1 |=1 G2 (3)

We assume that both `1,`2 are Peirce-style-calculi, that is:

1. Each rule can be applied either in arbitrary positive contexts, or in arbitrary
negative contexts, or in each context of a graph, and

2. For each rule which can be applied in arbitrary positive contexts, we have a rule
in the opposite direction which can be applied in arbitrary negative contexts.
Vice versa: For each rule which can be applied in arbitrary negative contexts, we
have a rule in the opposite direction which can be applied in arbitrary positive
contexts. The rules which can be applied in each contexts can be applied in
both directions.

The calculus `1, and hence `2 as well, encompasses the 5 basic-rules of Peirce. This
yields a first simple lemma:

Lemma 1 (Syntactical and Semantical Deduction Theorem).
Let Ga, Gb be two CGwCs. Then we have

Ga `i Gb ⇐⇒ `i

�
�
�
�

�� �Ga Gb (4)

Ga |=i Gb ⇐⇒ |=i

�
�
�
�

�� �Ga Gb (5)

Proof: We show both directions separately and start with ‘=⇒’:

dc.

`

�
�
�
�
�� �ins.

`

�
�
�
�
�� �Ga

it.

`

�
�
�
�
�� �Ga Ga

Lm. 6.4. in [2]

`

�
�
�
�
�� �Ga Gb

The direction ‘⇐=’ is done as follows:

Ga

Lm. 6.4. in [2]

` Ga

�
�
�
�
�� �Ga Gb

deit.

` Ga

�
�
�
�
�� �Gb

dc

` Ga Gb

era.

` Gb

2

By definition of `, we have: If H := {Gi | i ∈ I} is a (possibly empty) set of CG-
wCs, then a graph G can be derived from H if and only if there is a finite subset
{G1, . . . ,Gn} ⊆ H with G1 . . .Gn ` G (where G1 . . .Gn is the juxtaposition of
G1, . . . ,Gn).
It is easy to check that M1 satisfies the compactness-theorem. Thus, for the seman-
tical entailment relation, we have a similar property, i.e. we have: If H := {Gi | i ∈ I}



is a (possibly empty) set of nonexistential concept graphs, then H |= G if and only
if there is a finite subset {G1, . . . ,Gn} ⊆ H with G1 . . .Gn |= G. From this we
immediately conclude for a CGwC G and set H of CGwCs:

H `1 G ⇐⇒ H |=1 G (6)

Now the main idea for the extension of `1 to `2 is the following: The models in M2

have to be described properly by the additional rules in `2 \ `1. That is, on the
one hand, the rules in `2 have to be sound, i.e. for two CGwCs G1,G2 we have

G1 `2 G2 =⇒ G1 |=1 G2 (7)

On the other hand, let us assume that for each M ∈M1\M2, there exists a graph
GM with

`2 GM and M 6|= GM (8)

If the last two assumptions (7) and (8) hold, we obtain that `2 is an adequate
calculus, as the following theorem shows.

Theorem 1 (Completeness of `2).
`2 is complete, i.e. Ga |=2 Gb =⇒ Ga `2 Gb.

Proof: Let H := {GM |M ∈ M1\M2}. From (7) we conclude: |=2 GM for all
GM ∈ H. Now (8) yields:

M2 = {M ∈M1 |M |= G for all G ∈ H} (9)

Thus, we get:

Ga |=2 Gb
Def⇐⇒ f.a. M∈M2 : if M |= Ga, then M |= Gb

(9)⇐⇒ f.a. M∈M1 : if M |= G for all G ∈ H and M |= Ga, then M |= Gb

⇐⇒ H
.
∪ {Ga} |=1 Gb

(6)⇐⇒ H
.
∪ {Ga} `1 Gb

⇐⇒ there are G1, . . . ,Gn ∈ H with G1 G2 . . . Gn Ga `1 Gb

(4)⇐⇒ there are G1, . . . ,Gn ∈ H with `i

�
�

�
�
�� �G1 G2 . . . Gn Ga Gb

From this result, `2⊇`1 and (8) we obtain:

`2 G1 . . . Gn

�
�

�
�
�� �G1 . . . Gn Ga Gb

deit.

`2 G1 . . . Gn

�
�
�
�
�� �Ga Gb

era.

`2

�
�
�
�
�� �Ga Gb

Now (4) yields Ga `2 Gb. 2

4 Incorporating Background Knowledge into the Calculus

As the preceding section shows, we have to find additional and sound rules which
describe properly the restriction of M1 to M2. This is done separately for object-
and concept-implications. Concept implications are easier to handle, so we start
with them.



4.1 Incorporating Concept Implications

We have already seen that concept implications are a generalization of the order
on the concept names in a type-hierarchy. A subsumption relation C1 ≤ C2 is
reflected in reflected in `1 by the rules ‘generalization‘ and ‘specialization’, which
–particularly for C1 ≤ C2– allow to replace an evenly enclosed vertex C1 : g (with

g ∈ G
.
∪ {∗}) by C2 : g , and, vice versa, to replace an oddly enclosed vertex C2 : g

by C1 : g . These rules will be canonically extended.
Let a concept implication C1 ∧ . . . ∧Cn−1 → Cn for concept names C1, . . . , Cn ∈ C
be given. As discussed in Sec. 2, this implication yields the following restriction for
models: M ∈ M2 ⇐⇒ M ∈ M1 and λC(C1) ∧ . . . ∧ λC(Cn−1) ≤ λC(Cn). In other
words: For all g ∈ G0 we have

g ∈ λC(C1) ∧ . . . g ∈ λC(Cn−1) =⇒ g ∈ λC(Cn) (10)

Before we provide a rule which encompasses this implication, we need a simple
definition.

Definition 5 (θG).
Let G := (V,E, ν,>, Cut, area, κ, ρ) be a concept graph over A. Let θG be the small-
est equivalence relation on V such that if e ∈ E is an edge with ν(e) = (v1, v2) and
κ(e) ≤ .=, then v1θGv2.

Now the new rules for the calculus are:

1. generalization of concepts
Let G := (V,E, ν,>, Cut, area, κ, ρ) be a CGwCs and let v1, . . . , vn−1 ∈ V be
vertices with v1θGv2θG . . . θGvn−1 such that c := cut(v1) = . . . = cut(vn−1)
is an even context, and κ(vi) = Ci for all 1 ≤ i ≤ n − 1. Then for each vi,
κ(vi) = Ci may be replaced by κ(vi) = Cn.

2. specialization of concepts
The preceding rule may be reversed in negative contexts.

We have to show that these rules satisfy Eqn. (7) and Eqn. (8).
The soundness of the rules can be proven analogously to the soundness of the rules
‘generalization’ and ‘specialization’ in `1 (see [2]), hence Eqn. (7) holds.
Now we derive with the new rule a graph G as follows:

DC, Ins

` C1 : ∗
�
 �	= C2 : ∗
�
 �	= . . .
�
 �	= Cn−1 : ∗

�
�

�
�
�
�
�


It

` C1 : ∗
�
 �	= C2 : ∗
�
 �	= . . .
�
 �	= Cn−1 : ∗

C1 : ∗
�
 �	= C2 : ∗
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Let M ∈M1\M2 be an arbitrary contextual model. Eqn. (10) immediately yields
that M 6|= G. We conclude that Eqn. (8) is satisfied, thus Thm. 1 yields that `2 is
complete.

4.2 Background Knowledge for Objects

Incorporating concept implications into `2 was straight forward. First of all, con-
cept implications can be considered to be a generalization of the idea of a type
hierarchy, i.e., in our alphabet, we have an order on the concept names. But we
do not have a corresponding order on the object names in a type hierarchy, which
could analogously be generalized to object implications. Moreover, the proof for the
completeness in the last subsection heavily relies on the fact that we can quantify
over objects (to be more precisely: In the system of CGwCs, we can express univer-
sal quantification and material implications). Thus, the structure of the proof in the
last subsection cannot be adopted for object implications, as we have no possibility
to quantify over concepts.
The main idea now is as follows: If we had ‘enough’ concept names to describe all
concepts of a contextual structure, we do not need an universal quantification. Then
we could hopefully adopt the idea of the last section.
First of all, we have to clarify the meaning of ‘enough’. Usually, the concept names
do not encompass all concepts in a contextual structure. But it is not necessary that
each concept (A,B) of a given contextual model is generated by a concept name
(i.e., there exists a concept name C with λC(C) = (A,B)). The following further
restriction for the models in M2 will turn out to be sufficient:

General Restriction for Models M∈M2: The concepts of
M which are generated by concept names are

∧
-dense in the set

of all concepts.
(∗)

Now let an object implication g1 ∧ . . . ∧ gn−1 → gn for object names g1, . . . , gn ∈ G
be given. This implication yields the following restriction for models:

M∈M2 :⇐⇒ M ∈M1 , M satisfies (∗) and λG(g1) ∨ . . . ∨ λG(gn−1) ≥ λG(gn)

The rules capturing this restriction are defined analogously to the rules for concept
implications. They are as follows:

1. generalization of objects
Let G := (V,E, ν,>, Cut, area, κ, ρ) be a CGwC and let v1, . . . , vn ∈ V be
vertices such that c := cut(v1) = . . . cut(vn−1) = cut(vn) is an even context,
we have ρ(vi) = gi for all 1 ≤ i ≤ n − 1, and there is a (fixed) C ∈ C with
κ(vi) = C for all 1 ≤ i ≤ n − 1. Then, for each vi, ρ(vi) = gi may be replaced
by ρ(vi) = gn.

2. specialization of objects
The preceding rule may be reversed in negative contexts.

Again, the soundness of these rules can be proven analogously to the soundness of
the rules ‘generalization’ and ‘specialization’ in `1, so Eqn. (7) holds.
The proof of Eqn. (8) for these rules is more complex than for object implications.
In contrast to object implications, we will construct for each model M ∈ M2 a
graph GM which satisfies Eqn. (8). So let M∈M2 be a fixed model.



Let M := {m1, . . . ,mk} be an enumeration of the attributes ofM. Due to (∗), each
attribute concept µ(mi), 1 ≤ i ≤ k, of M is the meet of some concepts generated
by concept names. We fix these concept names as follows: For each 1 ≤ i ≤ k, let
Ci,1, . . . , Ci,ni be ni concepts names with µ(mi) = λC(Ci,1) ∧ . . . ∧ λC(Ci,ni) . In
order to construct a graph GM for Eqn. (8), we transform the model restriction
γ(λG(g1)) ∨ . . . ∨ γ(λG(gn−1)) ≥ γ(λG(gn)) as follows:

γ(λG(g1)) ∨ . . . ∨ γ(λG(gn−1)) ≥ γ(λG(gn))
⇐⇒ λG(g1)I ∩ . . . ∩ λG(gn−1)I ⊆ λG(gn)I

⇐⇒ ∀m ∈M : λG(g1)Im ∧ . . . ∧ λG(gn−1)Im⇒ λG(gn)Im
⇐⇒ ∀m ∈M : λG(g1) ∈ Ext(µ(m)) ∧ . . . ∧ λG(gn−1) ∈ Ext(µ(m))⇒

λG(gn) ∈ Ext(µ(m))
⇐⇒ ∀1 ≤ i ≤ k : λG(g1) ∈ Ext[λC(Ci,1) ∧ . . . ∧ λC(Ci,ni)] ∧ . . . ∧

λG(gn−1) ∈ Ext[λC(Ci,1) ∧ . . . ∧ λC(Ci,ni)]⇒
λG(gn) ∈ Ext[λC(Ci,1) ∧ . . . ∧ λC(Ci,ni)]

⇐⇒ ∀1 ≤ i ≤ k : λG(g1) ∈ Ext(λC(Ci,1)) ∧ . . . ∧ λG(g1) ∈ Ext(λC(Ci,ni)) ∧ . . . ∧
λG(gn−1) ∈ Ext(λC(Ci,1)) ∧ . . . ∧ λG(gn−1) ∈ Ext(λC(Ci,ni))⇒
λG(gn) ∈ Ext(λC(Ci,1)) ∧ . . . ∧ λG(gn) ∈ Ext(λC(Ci,ni)) (11)

Recall that λG(g) ∈ Ext(λC(C)) is, as a concept graph, expressed by the concept
box C : g . So we see that the last equation (which depends on i) can be represented
by a concept graph as follows:

GM,i :=

Ci,1 :g1

gCi,2 : n−1

Ci,2 : 1g

g g

Ci,1 :g2 gi,2 : 2C

g

g

Ci,1 :gn−1
...

... ... ...

...

...Ci,1 :gn i,2 : nC : n

: igCi,n i

...

Ci,n i

: n−1Ci,n i

: 2Ci,n i

It is easy to see that each graph GM,i can be derived from `2. Let GM be the
juxtaposition of all Gi, 1 ≤ i ≤ k, (which can be derived as well).
Similar to concept implications, Eqn. (11) yields that M 6|= GM, so Eqn. (8) is
satisfied. Again Thm. 1 yields that `2 is complete.

5 Discussion of the Results and Further Research

It has been the goal of the paper to show that object- and concept implications,
which Wille introduced to semantical concept graphs, can adequately be handled
in syntactical concept graphs as well. At a first glance, due to the proven results,
the goal of the paper is fulfilled. A closer observation shows valuable insights into
the different structure of semantical and syntactical concept graphs.



We have started with CGwCs, without any background knowledge. Then we ar-
gued that the incorporation of background knowledge corresponds to a restrictions
of our models. The basic idea of this paper is that these restrictions can already
be ”described” with our starting CGwCs, which has been captured by Eqn. (8).
Satisfying Eqn. (8) was possible because the expressive power of CGwCs is strong
enough. In contrast to the syntactical approach, for the semantical approach to con-
cept graphs, background knowledge was introduced to concept graphs in which we
have no possibility to express negation. Due to the weak expressive power of those
graphs, the restrictions of our models cannot be described with syntactical concept
graphs without cuts. Thus, the idea of this paper cannot be adopted to incorporate
background knowledge to syntactical concept graphs without cuts. So the question
arises how background knowledge can be handled in these graphs.
In [2, 3], it is shown that the calculus for concept graph with cuts is still complete
if it is restricted to the class of concept graphs without cuts. The proof relies on
completely different methods than the proofs in this paper: It is based on so-called
standard-models and standard-graphs. It is likely that the methods of [2, 3] can
be adopted to incorporate background knowledge to syntactical concept graphs
without cuts, but of course, this has to be worked out in a precise manner.
The next remarkable fact is that the handling of object implications had been
significant more complex than the handling of concept implications: We needed the
further restriction (∗) on page 10. For concept implications, we did not need a similar
restriction. The main reason for this is the fact that -similar to first order logic- we
can express with CGwCs an universal quantification for objects (in other words:
we have statements which range over the set of objects). But we cannot express an
universal quantification over concepts or relations. It should be stressed that with
an universal quantification for concepts, we would have the full expressive power of
second order logic. But then, due to the theorems of Lindström (see [10, 5]), it is
impossible to obtain a sound and complete calculus at all! Thus, an extension in
the language which allows us to express a quantification over concepts or relations
is is even not desirable.
In Formal Concept Analysis, thus in the semantical approach for concept graphs, we
have no restriction which corresponds to (∗). We have already argued that concept
implications can be reduced to attribute implications. Moreover, we have the well-
known duality for objects and attributes. Thus, due to this duality principle, it
is obvious that -for the semantical approach- concept implications and attribute
implications can be treated similar.
The different treatment of object- and concept implication in the syntactical ap-
proach would not arise if we used use the ”classical” relational models of first order
logic (instead of the contextual models) as semantics for concept graphs. Remem-
ber that a relational model is a pair (U, I), consisting of an universe of discourse
U , and an interpretation function I which maps object names to objects and rela-
tion names to (extensional) relations. Particularly, we do not have more relations in
this model than relation names in the underlying alphabet. For contextual models,
the situation is different: We may have many more concepts or relations than we
can describe with our language of syntactical concept graphs over a fixed alphabet.
For this reason we had to introduce restriction (∗). If (∗) is satisfied, then, roughly
speaking, each concept or relation of a contextual model can be described within
our language of CGwCs, even if the concept or relation has no name.
In practice, the restriction (∗) should have no considerable effects. This can easily
be seen if we examine how Toscana-Systems are set up. This process usually starts
with fixing a set of objects and multi-valued attributes, from which –usually with
the process of scaling– a formal context and its concepts is derived. The crucial
point for our consideration is that the knowledge experts determine the objects,
attributes and the incidence relations of the context, then, afterwards, the concept



lattice is derived and examined. Particularly, a knowledge experts explicates only
attributes and attribute concepts, but no further concepts. Of course, these expli-
cated attribute concepts are

∧
-dense in the set of all concepts of the formal context,

i.e., (∗) will obviously be fulfilled. In this sense, for incorporating the results of this
paper in the development of Toscana-systems, we probably do not have to take care
of (∗). Nonetheless, the impact of (∗) to models has to be further investigated.
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