
Constants and Functions in
Peirce’s Existential Graphs

Frithjof Dau

University of Wollongong, Australia
dau@uow.edu.au

Abstract. The system of Peirce’s existential graphs is a diagrammatic
version of first order logic. To be more precisely: As Peirce wanted to
develop a logic of relatives (i.e., relations), existential graphs correspond
to first order logic with relations and identity, but without constants or
functions. In contemporary elaborations of first order logic, constants
and functions are usually employed. In this paper, it is described how
the syntax, semantics and calculus for Peirce’s existential graphs has to
be extended in order to encompass constants and functions as well.

1 Motivation and Introduction

It is well-known that Peirce’s (1839-1914) extensively investigated a logic of
relations (which he called ‘relatives’). Much of the third volume of the col-
lected papers [HB35] is dedicated to this topic (see for example “Description
of a Notation for the Logic of Relatives, Resulting From an Amplification of the
Conceptions of Boole’s Calculus of Logic” (3.45–3.149, 1870) “On the Algebra
of Logic” (3.154–3.251, 1880), “Brief Description of the Algebra of Relatives”
(3.306–3.322, 1882), and “the Logic of Relatives” (3.456–3.552, 1897)). As Burch
writes, in Peirce’s thinking ’reasoning is primarily, most elementary, reasoning
about relations’ ([Bur91], p. 2, emphasis by Burch).

Starting in 1896, Peirce invented a diagrammatic form of formal logic, namely
his system of existential graphs [Zem64, Rob73, Shi02, PS00, Dau06b]. The Beta
part of this system corresponds to first order logic (FO) [Zem64, Dau06b]. To
be more precisely: As Peirce investigated a logic of relations, the Beta part of
existential graphs is equivalent to FO with relations and identity, but without
constants or functions. In contrast to that, the contemporary symbolic formal-
izations of FO are intended to represent statements about objects, relations, and
functions. This paper attempts to show how system of existential graphs has to
be extended in order to cover constants and and functions as well.

This paper is part of the author’s research on Sowa’s conceptual graphs and
Peirce’s existential graphs [Dau02, Dau03, Dau06d, Dau06a, Dau06c, Dau06b].
It aims to provide a sufficiently formal elaboration of the paper’s goal. For this
reason, a formal elaboration of existential graphs, including their syntax, se-
mantics, and calculus, would be needed. Due to space limitations, this is by no

means possible. To resolve this problem, only those definitions and theorems
of the author’s treatises [Dau03, Dau06b] which are needed to keep this paper
almost self-contained will be given. For the motivation of the definitions, the
proofs of the theorems etc, please look at the treatises. Particularly, the scrutiny
will not be carried out on a formal elaboration of existential graphs, but on
discrete structures called existential graph instances (EGIs) instead. It
shall be shortly explained how EGIs are related to the concept graphs with cuts
(CGwCs) of [Dau03] and the formal existential graphs of [Dau06b].

CGwCs [Dau03] are a formal elaboration of simple conceptual graphs [Sow84,
Sow92, Sow00, CM92, CM95], where the cuts of Peirce’s existential graphs are
added to allow for negation of subgraphs. They are elaborated in terms of mathe-
matical graph theory. The system of CGwCs is equivalent to FO with constants,
relations and identity, but without function names. It will turn out that EGIs
are a restricted form of CGwCs.

In contrast to CGwCs and formulas of FO, existential graphs are not per se dis-
crete structures. To formalize them, [Dau06b] takes a two-step approach. First,
discrete structures, namely the herein presented EGIs, are introduced. An EGI
can be best understood as one (of many) possible discrete formalizations of a
given existential graph. Then all different EGIs which formalize the same (naive)
existential graph are aggregated in a class, and each of these classes is called a
formal existential graph. For further details, see [Dau06b].

The organization of the paper is as follows. Sec. 2 provides a short overview of
the definitions and theorems of [Dau03, Dau06b] which are needed in this paper
for defining the syntax and semantics of EGIs. The main task is to extend the
calculus as well. In Sec. 3, the general methodology for extending the calculus
is provided. Then, using this methodology, new rules for constants and function
names are provided in Sec. 4, and their soundness and completeness if proven. In
Sec. 5, a short example for a formal proof within the extended system of EGIs is
given. Finally, Sec. 6 discusses the results of the paper and provides an outlook
to further research.

2 Syntax and Semantics

The underlying structure for EGIs and CGwCs are relational graphs with cuts.

Definition 1 (Relational Graphs with Cuts). A relational graph with
cuts is a structure (V,E, ν,>, Cut, area), where

– V , E and Cut are pairwise disjoint, finite sets whose elements are called
vertices edges and cuts, respectively,

– ν : E →
⋃

k∈N0
V k is a mapping,

– > is a single element with > /∈ V ∪E ∪Cut, the sheet of assertion, and
– area : Cut ∪ {>} → P(V ∪ E ∪ Cut) is a mapping which satisfies a) c1 6=

c2 ⇒ area(c1) ∩ area(c2) = ∅ , b) V ∪ E ∪ Cut =
⋃

d∈Cut∪{>} area(d), and

c) c /∈ arean(c) for each c ∈ Cut∪{>} and n ∈ N (with area0(c) := {c} and
arean+1(c) :=

⋃
{area(d) | d ∈ arean(c)}).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we set |e| := k. The vertices, edges
and cuts will be called the elements of the graph. The elements of Cut ∪ {>}
are called contexts. Finally, as for every x ∈ V ∪E ∪Cut we have exactly one
context c ∈ Cut ∪ {>} with x ∈ area(c), we can write c = area−1(x) for every
x ∈ area(c), or even more simple and suggestive: c = ctx(x).

It is convenient to define a quasiorder ≤ on all elements of such a graph.

Definition 2 (Ordering on the Contexts, Enclosing Relation). Let G :=
(V,E, ν,>, Cut, area) be a relational graph with cuts. We define a mapping β :
V ∪ E ∪ Cut ∪ {>} → Cut ∪ {>} by β(x) := x for x ∈ Cut ∪ {>}, and β(x) :=
ctx(x) for x ∈ V ∪E. Next we set x ≤ y :⇐⇒ ∃n ∈ N0.β(x) ∈ arean(β(y)) We
define x < y :⇐⇒ x ≤ y ∧ y 6≤ x and x � y :⇐⇒ x ≤ y ∧ y 6= x. For a context
c ∈ Cut ∪ {>}, we set furthermore ≤[c] := {x ∈ V ∪ E ∪ Cut ∪ {>} | x ≤ c}
and �[c] := {x ∈ V ∪E ∪Cut∪ {>} | x � c}. Each element x of

⋃
n∈N arean(c)

is said to be enclosed by c, and vice versa: c is said to enclose x. For each
element of area(c), we moreover say that it is directly enclosed by c.

The relation ≤ is indeed a quasiorder. Moreover, on the contexts, it is a tree.
The proof for the following lemma can be found in [Dau03] and [Dau06b].

Lemma 1 (≤ Induces a Tree on the Contexts). For a relational graph with
cuts G := (V,E, ν,>, Cut, area), ≤ is a quasiorder. Furthermore, ≤

∣∣
Cut∪{>} is

an order on Cut ∪ {>} which is a tree with > as greatest element.

When defining the semantics, vertices which are deeper nested than some edge
they are incident with cannot be evaluated. So this case has to be ruled out. For
this reason, the next definition is needed.

Definition 3 (Dominating Nodes). If ctx(e) ≤ ctx(v) (⇔ e ≤ v) for every
e ∈ E and v ∈ Ve, then G is said to have dominating nodes.

Next, we will define EGIs to be relational graphs with cuts, where the edges
are additionally labelled with names. If EGIs are used to formalize existential
graphs, we would only need relation names. For the purpose of this paper, we
will introduce an alphabet with names for constants, functions and relations.

Definition 4 (Alphabet with Constants, Functions and Relations). An
alphabet is a structure (C,F ,R, ar) of constant names, function names
and relation names, resp., together with an arity-function ar : F ∪ R → N
which assigns to each function name and relation name its arity. To ease the
notation, we set ar(C) = 1 for each C ∈ C. We assume that the sets C,F ,R are
pairwise disjoint. The elements of C

.
∪ F

.
∪ R are the names of the alphabet.

Let .=∈ R2 be a special name which is called identity.

Later on, we will interpret an n-ary function F to be an n-ary relation which
satisfies a specific property, namely: For each n objects o1, . . . , on−1 exists exactly
one object on with F (o1, o2, . . . , on−1, on). So, functions can be understood as
special relations. Please note that we adopt the arity of relations for functions.
That is, an n-ary function assigns a value to n−1 arguments. This understanding
of the arity of a function is not the common one, but it will ease the forthcoming
notations. Analogously, even an object o can be understood as a special relation,
namely the relation {(o)}. That is: objects correspond to unary relations which
contain exactly one element (or to functions with zero arguments).

Now we are prepared to define existential graph instances (EGIs).

Definition 5 (Existential Graph Instance over (C, F , R, ar)). An ex-
istential graph instance (EGI) over an alphabet A = (C,F ,R, ar) is
a structure G := (V,E, ν,>, Cut, area, κ) where (V,E, ν,>, Cut, area) is a rela-
tional graph with cuts and dom. nodes, and κ : E → C

.
∪ F

.
∪ R is a mapping

such that |e| = ar(κ(e)) for each e ∈ E. The elements of E with κ(e) = .= are
called identity-edges. The system of all EGIs over A will be denoted by EGIA.

As said in the introduction, formal existential graphs are in [Dau06b] defined
as classes of EGIs, where only relation names occur. Those EGIs can in turn
understood to be those CGwCs where only concept boxes of the form > : ∗
appear. In their diagrammatic representation, we will draw the vertices, as usual
in graph theory, as bold dots.

Next we define isomorphisms and partial isomorphisms between EGIs. The for-
mal definition of a isomorphism is canonical. The rules of the calculus (like the
rules of Peirce, i.e. erasure, insertion, double cut, iteration and deiteration, or the
new rules presented in this paper for constants and functions) modify a graph
within a given context. For this reason, we furthermore have a notion of two
EGIs being isomorphic except a context.

Definition 6 ((Partial) Isomorphism). For i = 1, 2, let two EGIs Gi :=
(Vi, Ei, νi,>i, Cuti, areai, κi) be given.

An isomorphism f = fV

.
∪ fE

.
∪ fCut is composed of three bijective mappings

fV : V1 → V2, fE : E1 → E2 and fCut : Cut1 ∪ {>1} → Cut2 ∪ {>2} which
satisfy fE(v1, . . . , vn) = (fV (v1), . . . , fV (vn)) for each e = (v1, . . . , vn) ∈ E1,
f [area1(c)] = area2(f(c)) for each c ∈ Cut1 ∪ {>1} (with f [area1(c)] = {f(k) |
k ∈ area1(c)}), and κ1(e) = κ2(fE(e)) for all e ∈ E1.

Now let furthermore two contexts ci ∈ Cuti ∪ {>i} be given. For i = 1, 2, we set
V ′

i := {v ∈ Vi | v 6≤ ci}, E′
i := {e ∈ Ei | e 6≤ ci}, and Cuti

′ := {d ∈ Cuti ∪{>i} |
d 6< ci}. Let G′

i be the restriction of Gi to these sets, i.e., for areai
′ := areai

∣∣
Cuti

′

and κi
′ := κi

∣∣
Ei

′ , let G′
i := (V ′

i , E′
i, ν

∣∣
E′

i

,>i, Cut′i, area′i, κi
′). If f = fV ′

1

.
∪

fE′
1

.
∪ fCut′1

is an isomorphism between G′
1 and G′

2 with fCut(c1) = c2, then f
is called (partial) isomorphism from G1 to G2 except for c1 and c2.

In this definition, for the restrictions areai
′ and κi

′, we of course agree that the
ranges of these functions are restricted to V i

′ ∪ Ei
′ ∪ Cuti

′ as well. Moreover,
note that this definition relies on the graph to have dominating nodes (otherwise
it might happen that the structures G′

i are no well-defined EGIs).

After defining the syntax for EGIs, we now turn to the semantics. First the
models are defined in the usual manner known from formal logic.

Definition 7 (Relational Structures over (C, F , R, ar)). A relational
structure over an alphabet A = (C,F ,R, ar) is a pair M := (U, I) con-
sisting of a nonempty universe U and a function I := IC ∪ IF ∪ IR with

1. IC : C → U ,
2. IF : F →

⋃
k∈N P(Uk) is a mapping such that for each F ∈ F with ar(F) =

k, I(F) ∈ Uk is (total) function I(F) : Uk−1 → U , and
3. IR : R →

⋃
k∈N P(Uk) is a mapping such that for each R ∈ F with ar(R) =

k, I(R) ∈ Uk is a relation. The name ’ .=’ is mapped to the identity relation
on U .

When an EGI is evaluated in a relational structure (U, I), we have to assign
objects of our universe of discourse U to its vertices. This is done by valuations.

Definition 8 (Valuations). Let an EGI G := (V,E, ν,>, Cut, area, κ) be given
and let (U, I) be a relational structure over A. Each mapping ref : V ′ → U with
V ′ ⊆ V is called a partial valuation of G. If V ′ = V , then ref is called
(total) valuation of G. Let c ∈ Cut ∪ {>}. If V ′ ⊇ {v ∈ V | v > c} and
V ′ ∩ {v ∈ V | v ≤ c} = ∅, then ref is called partial valuation for c. If
V ′ ⊇ {v ∈ V | v ≥ c} and V ′ ∩{v ∈ V | v < c} = ∅, then ref is called extended
partial valuation for c.

The semantics for EGIs is based on Peirce’s endoporeutic method. He read and
evaluated existential graphs from the outside, hence starting with the sheet of as-
sertion, and proceeded inwardly. During this evaluation, he assigned successively
values to the lines of identity. This idea is adopted in the next definition.

Definition 9 (Endoporeutic Evaluation of Graphs). Let an EGI G :=
(V,E, ν,>, Cut, area, κ) be given and let (U, I) be a relational structure over A.
Inductively over the tree Cut∪{>}, we define (U, I) |= G[c, ref] for each context
c ∈ Cut ∪ {>} and every partial valuation ref : V ′ ⊆ V → U for c:

(U, I) |= G[c, ref] :⇐⇒
ref can be extended to an partial valuation ref : V ′∪ (V ∩area(c)) → U
(i.e., ref is an extended partial valuation for c with ref(v) = ref(v) for
all v ∈ V ′), such that the following conditions hold:

– ref(e) ∈ I(κ(e)) for each e ∈ E ∩ area(c) (edge condition))
– (U, I) 6|= G[d, ref] for each d ∈ Cut ∩ area(c) (cut condition and

iteration over Cut ∪ {>}))

For (U, I) |= G[>, ∅] we write (U, I) |= G. If H is a set of EGIs and if G is an
EGI such that (U, I) |= G for each model (U, I) that satisfies (U, I) |= G′ for
each G′ ∈ H, we write H |= G.

Finally, we assume that we have a sound and complete calculus for EGIs where
only relation names occur (i.e., over alphabets (∅, ∅,R, ar)). Moreover, we as-
sume that this calculus is based on Peirce’s rules for existential graphs (erasure,
insertion, double cut, iteration and deiteration). As EGIs can be understood to
be CGwCs over alphabets without names for constants or types, we can adopt the
calculus of [Dau03] for this purpose. A similar calculus is provided in [Dau06b].
Both calculi contain Peirce’s rules1 and have additional rules which are needed
to handle identity edges. Due to space limitations, no calculus is given here.

The rules of the common calculi for FO (Hilbert-style calculi, natural deduc-
tion, sequent calculi) allow only modifications of formulae at their top-level. In
contrast to that, the rules of Peirce allow modifications of a graph inside arbi-
trarily deep contexts. For this reason, Peirce’s rules are much more powerful, and
their soundness proofs can turn out to be rather complex. For this reason, both
in [Dau03] and [Dau06b], two lemmata are provided which ease the soundness
proofs. The lemma which is needed in this paper is given below.

Theorem 1 (Main Thm. for Soundness, Equivalence Version). Let
EGIs G := (V,E, ν,>, Cut, area, κ), G′ := (V ′, E′, ν′,>′, Cut′, area′, κ′) be given
and let f be an isomorphism between G and G′ except for c ∈ Cut and c′ ∈ Cut′.
Set Cutc := {d ∈ Cut ∪ {>} | d 6< c}. Let M be a relational structure and let
P (d) be the following property for contexts d ∈ Cutc: Every partial valuation
ref for d satisfies M |= G[d, ref] ⇐⇒ M |= G′[f(d), f(ref)]. Then, if P holds
for c, then P holds for each d ∈ Cutc. Particularly, If P holds for c, we have
M |= G ⇐⇒M |= G′.

3 General Logical Background

When considering constants and function names instead of relation names only,
we have new entailments between graphs. For example, if C is a constant name,
the empty sheet of assertion (semantically) entails the graph s C . Thus it
must be possible to derive this graph from the empty sheet of assertion (which
would not be possible if C was an 1-ary relation name). The new entailments
must be reflected by the calculus, thus the calculus has to be extended in order
to capture the specific properties of constants and functions. There are basically
two approaches: Firstly, we can add axioms, secondly, we can add new rules to
the calculus. Besides the empty sheet of assertion, Peirce’s calculus for existen-
tial graphs has no axioms. To preserve this property, we will adopt he second
approach. This section aims to describe the methodology how this shall be done.

1 The iteration rule in [Dau06b] is more powerful than the iteration rule in [Dau03].

As already mentioned, constants and function names can be understood as re-
lation names which are mapped to relations with specific properties. If we have
an alphabet A′ = (C,F ,R, ar) with constants and function names, we can then
consider the alphabet A := (∅, ∅, C

.
∪ F

.
∪ R, ar), where each name is now un-

derstood as relation name. In this understanding, each EGI over A′ is an EGI
over A as well. Moreover, if M′ := (U, I ′) with I ′ := I ′C ∪ I ′F ∪ I ′R is relational
structure over the alphabet A′, then M := (U, I) with I(F) := I ′F (F) for each
F ∈ F , I(R) := I ′R(R) for each R ∈ R, and I(C) := {(I ′C(C)} for each C ∈ C
is the corresponding model over the alphabet A. We implicitly identify M and
M′. Due to this convention, each model over A′ is an model over A as well. But
the models for A′ form a subclass of the models for A. That is, if we denote the
models for A′ with M2 and the models for A with M1, we have M2 (M1.

Thus we have to deal with two classes of models, which yield two entailment
relations. If H is a set of EGIs and if G is an EGI such that M |= G for each
relational structure M∈ Mi with M |= G′ for each G′ ∈ H, we write H |=i G.

In Sec. 2, we assumed to have a sound and complete calculus for EGIs where
only relation names occur; that is, for EGIs which are evaluated in M1. In the
following, this calculus shall be denoted by `1. The soundness and completeness
of `1 can be now stated as follows: If H ∪ {G} is a set of EGIs over A, we have

H `1 G ⇐⇒ H |=1 G (1)

We seek a calculus `2 which extends `1 (that is, `2 has new rules, which will be
denoted by `2⊇`1) and which is sound and complete with respect to M2.

The calculus `1, and hence `2 as well, encompasses the 5 basic-rules of Peirce.
Thus for both calculi, the deduction theorem (see Lemma 6.5 of [Dau03] or
Lemma. 8.7 of [Dau06b] holds, i.e., for i = 1, 2, we have

Ga `i Gb ⇐⇒ `i

�
�

�
��
 �	Ga Gb (2)

We will extend `1 to `2 as follows: First of all, the new rules in `2 have to be
sound. Then for a set of graphs H and an EGI G we have

H `2 G =⇒ H |=2 G (3)

On the other hand, let us assume that for each M ∈ M1\M2, there exists a
graph GM with

`2 GM and M 6|= GM (4)

If the last two assumptions (3) and (4) hold, we obtain that `2 is an adequate
calculus, as the following theorem shows.

Theorem 2 (Completeness of `2). A set H∪ {G} of EGIs over an alphabet
A := (C,F ,R, ar) satisfies

H |=2 G =⇒ H `2 G

Proof: Let H2 := {GM | M ∈ M1\M2}. From (3) we conclude: |=2 GM for all
GM ∈ H2. Now (4) yields:

M2 = {M ∈ M1 | M |= G for all G ∈ H2} (5)

Now let H ∪ {G} be an arbitrary set of graphs. We get:

H |=2 G
Def⇐⇒ f.a. M∈ M2 : if M |= G′ for all G′ ∈ H, then M |= G

(5)⇐⇒ f.a. M∈ M1 : if M |= G′ for all G ∈ H2 ∪ H, then M |= G

⇐⇒ H ∪ H2 |=1 G

(1)⇐⇒ H ∪ H2 `1 G

⇐⇒ there are G1, . . . ,Gn ∈ H and G′
1, . . . ,G

′
m ∈ H2 with

G1 G2 . . . Gn G′
1 G′

2 . . . G′
m `1 G

(2)⇐⇒ there are G1, . . . ,Gn ∈ H and G′
1, . . . ,G

′
m ∈ H2 with

`1

�
�

�
��
 �	G1 G2 . . . Gn G′

1 G′
2 . . . G′

m Gb

`2⊇`1 , (4)
=⇒ there are G1, . . . ,Gn ∈ H and G′

1, . . . ,G
′
m ∈ H2 with

`2 G′
1 . . . G′

m

�
�

�
��
 �	G1 G2 . . . Gn G′

1 G′
2 . . . G′

m Gb

deit.⇐⇒ there are G1, . . . ,Gn ∈ H and G′
1, . . . ,G

′
m ∈ H2 with

`2 G′
1 . . . G′

m

�
�

�
��
 �	G1 G2 . . . Gn Gb

era.=⇒ there are G1, . . . ,Gn ∈ H with `2

�
�

�
��
 �	G1 . . . Gn Gb

(2)⇐⇒ there are G1, . . . ,Gn ∈ H with G1, . . . ,Gn `2 G

Def.=⇒ H `2 G 2

4 Extending the Calculus

In this section, the calculus is extended in order to capture the specific properties
of constants and functions. We start the scrutiny with functions.

The following EGI holds in a model (U, I) exactly if F is interpreted as an n-ary
(total) function I(F) : Un−1 → U :

GF :=

n

n

1
F

Fn−1

n−1

1

1

n−1
F n

More precisely: The left subgraph is satisfied if F is interpreted as partial func-
tion (that is, to objects o1, . . . , on−1 exist at most one on with I(F)(o1, . . . , on)),

the right subgraph is satisfied if for objects o1, . . . , on−1 exist at least one on with
I(F)(o1, . . . , on). In other words: The left subgraph guarantees the uniqueness,
the right subgraph the existence of function values.

According to the last subsection, we have to find rules which are sound and
which enable us to derive each graph GF with F ∈ F . They are given below.

Definition 10 (New Rules for Function Names). Let F ∈ F be an n-ary
function name. Then all rules of the calculus, where F is treated like a relation
name, may be applied. Moreover, the following additional transformations may
be performed:

– Functional Property Rule (uniqueness of values) Let e, f be n-ary
edges with ν(e) = (v1, . . . , vn−1, ve), ν(f) = (v1, . . . , vn−1, vf), ctx(e) =
ctx(ve), ctx(f) = ctx(vf), and κ(e) = κ(f) = F . Let c be a context with
c ≤ ctx(e) and c ≤ ctx(f). Then arbitrary identity-links id with ν(id) =
(ve, vf) may be inserted into c or erased from c.

– Total Function Rule (existence of values) Let v1, . . . , vn−1 be vertices,
let c be a context with c ≤ ctx(v1), . . . , ctx(vn−1). Then we can add a vertex
vn and an edge e to c with ν(e) = (v1, . . . , vn) and κ(e) = F . Vice versa, if
vn and e are a vertex and an edge in c with ν(e) = (v1, . . . , vn) and κ(e) = F
such that vn is not incident with any other edge, e and vn may be erased.

We have to show that these rules are sound are complete. We start with the
soundness of the rules.

Lemma 2 (The Total Function Rule is Sound). If G and G′ are two EGIs
over A := (C,F ,R, ar), M := (U, I) is a relational structure with M |= G and
G′ is derived from G with the total function rule, then M |= G′.

Proof: Let G′ be obtained from G by adding a vertex vn and an edge e to c
according to the total function rule. We want to apply Lemma 1 to c, so let ref
be a valuation for the context c.

Let us first assume that we have M |= G[c, ref], i.e., there is an extension ref
of ref to V ∩ area(c) with M |= G[c, ref]. Let o := I(F)(ref(v1, . . . , ref(vn)).
Then ref ′ := ref ∪ {(vn, o)} is a extended partial valuation for c in G′ which
satisfies M |= G[c, ref ′], as the additional edge condition for e in the context c
of G′ holds due to the definition of ref ′. Particularly, we obtain M |= G′[c, ref].

Now let M |= G′[c, ref], i.e., there is an extension ref ′ of ref to V ∩ area(c)
withM |= G′[c, ref ′]. For ref := ref ′\{(vn, ref ′(vn))} we haveM |= G[c, ref],
thus M |= G[c, ref].

Now Lemma 1 yields the lemma. 2

Lemma 3 (The Functional Property Rule is Sound). If G and G′ are two
EGIs over A := (C,F ,R, ar), M := (U, I) is a relational structure with M |= G
and G′ is derived from G with the functional property rule, then M |= G′.

Proof: Let G′ be obtained from G′ by inserting an identity-link id with ν(id) =
(ve, vf) into c. We set ce := ctx(e) and cf := ctx(f). The EGIs G and G′ are
isomorphic except for the context c. First note that the contexts ce and cf must
be comparable. W.l.o.g. we assume ce ≥ cf ≥ c.

We first consider the case ce = cf = c. We want to apply Lemma 1 to c, so let
refc be a partial valuation for c. In G′ in the context c, we have added the edge
id, thus for c, there is one more edge condition to check. So it suffices to prove

(U, I) |= G[c, refc] =⇒ (U, I) |= G′[c, refc] (6)

Let (U, I) |= G[c, refc]. That is, there is an extension refc of refc to V ∩area(c)
with G |= G[c, refc], i.e., refc satisfies all edge- and cut-conditions in c. Partic-
ularly, it satisfies the edge-conditions for e and f , that is:

(refc(v1), . . . ref(vn−1), refc(ve)) ∈ I(κ(e)) and
(refc(v1), . . . ref(vn−1), refc(vf)) ∈ I(κ(f))

i.e., refc(ve) = I(F) (refc(v1), . . . refc(vn−1)) = refc(vf). From this we conclude
that the additional edge condition for id in G′ is satisfied by refc. We obtain
G′ |= G[c, refc], hence G′ |= G[c, refc], thus Eqn. (6) holds. Now Lemma 1 yields
M |= G ⇐⇒M |= G′.

Next we consider the case ce = cf > c. We want to apply Lemma 1 to ce, so let
refce be a partial valuation for ce. To apply Lemma 1, it it suffices to prove

G |= G[ce, refce] ⇐⇒ G′ |= G[ce, refce] (7)

for each extension refce
of refce

to area(ce)∩V . So let refce
be such an extension,

If refce
does not satisfy the edge-conditions for e and f , we have G 6|= G[c, refce

]
and G′ 6|= G[c, refce

], thus Eqn. (7) holds. So let refce
satisfy the edge-conditions

for e and f . Analogously to the case ce = cf = c we obtain refce
(ve) = refce

(vf).
Moreover, for each extension refc of refce to a partial valuation of c, we obtain
G |= G[c, refc] ⇐⇒ G′ |= G[c, refc]. This can be seen analogously to the
case ce = cf = c, as G and G′ differ only by adding the edge edge id in c, but
for each extension of refc to area(c) ∩ V , the edge-condition for id is due to
refce

(ve) = refce
(vf) fulfilled. Now it can easily be shown by induction that for

each context d with ce > d ≥ c and each extension refd of refce
to area(d)∩ V ,

we have G |= G[d, refd] ⇐⇒ G′ |= G[d, refd]. This yields G |= G[ce, refce] ⇐⇒
G′ |= G[ce, refce], i.e., Eqn. (7) holds again.

Next we consider the case ce > cf > c. The basic idea of the proof is analogous
to the last cases, but we have two nested inductions. Again we want to apply
Lemma 1 to ce, so let refe be a partial valuation for ce. Again we show that
Eqn. (7) holds for each extension refe of refe to area(ce) ∩ V . Similarly to the
last case, we assume that refe satisfies the edge-condition for e. It is sufficient
to show that

G |= G[cf , reff] ⇐⇒ G′ |= G[cf , reff] (8)

holds for each each extension reff of refe to area(cf)∩V : Then similarly to the
last case, an inductive argument yields that for each context d with ce > d ≥ cf

and each extension refd of refce to area(d) ∩ V , we have G |= G[d, refd] ⇐⇒
G′ |= G[d, refd]. This yields G |= G[ce, refe] ⇐⇒ G′ |= G[ce, refe]. That is,
Eqn. (7) holds.

It remains to show that Eqn. (8) holds. Let us consider an extension reff of
refe to area(cf) ∩ V . To prove Eqn. (8), it is sufficient to show that

G |= G[cf , reff] ⇐⇒ G′ |= G[cf , reff] (9)

holds for each extension reff of reff to area(cf) ∩ V . Now we can perform
the same inductive argument as in the last case. If reff does not satisfy the
edge-condition for f , we are done. If reff satisfies the edge-condition, we have
reff (ve) = reff (vf). For each extension refc of reff to area(c) ∩ V , we obtain
G |= G[c, refc] ⇐⇒ G′ |= G[c, refc]. Now from the usual inductive argument
we obtain that for each context d with cf > d ≥ c and each extension refd of
reff to area(d) ∩ V , we have G |= G[d, refd] ⇐⇒ G′ |= G[d, refd]. From this
we conclude that Eqn. (9), thus Eqn. (8), holds. This finishes the proof for the
case ce > cf > c.

Finally, the cases ce > cf = c and cf > ce = c can be handled analogously. 2

Next, the new rules for constants are introduced. As already been mentioned,
it is well-known that functions f with zero arguments correspond to objects
in the universe of discourse. For this reason, a distinction between constants
and function names is, strictly speaking, not necessary. So the rules for constant
names correspond to rules for 1-ary functions (i.e. functions f with dom(f) = ∅).

Definition 11 (New Rules for Constant Names). Let C ∈ C be a constant
name. Then all rules of the calculus, where F is treated like a relation name, may
be applied. Moreover, the following additional transformations may be performed:

– Constant Identity Rule Let e, f be two unary edges with ν(e) = (ve),
ν(f) = (vf), ctx(ve) = ctx(e), ctx(vf) = ctx(f),and κ(e) = κ(f) = C. Let c
be a context with c ≤ ctx(e) and c ≤ ctx(f). Then arbitrary identity-links id
with ν(id) = (ve, vf) may be inserted into c or erased from c.

– Existence of Constants Rule In each context c, we may add a fresh vertex
v and an fresh unary edge e with ν(e) = (v) and κ(e) = C. Vice versa, if v
and e are a vertex and an edge in c with ν(e) = (v) and κ(e) = F such that
v is not incident with any other edge, e and v may be erased from c.
That is: Devices u C may be inserted into or erased from c.

As objects are handled like 1-ary functions, we immediately obtain the soundness
of the rules from Lem. 2 and Lem. 3.

It remains to prove the completeness of the extended calculus. This is subject
of the next theorem.

Theorem 3 (Extended Calculus is Complete). Each set H∪{G} of EGIs
over A := (C,F ,R, ar) satisfies H |= G ⇒ H ` G.

Proof: Due to the remark before Def. 11 and Thm. 2, it is sufficient to show that
for each F ∈ F , the graph GF can be derived with the new rules. The functional
property rule (abbreviated by fp) enables us to derive the left subgraph of GF

as follows:

dc.

`
ins.

`

1
F

Fn−1

n−1

1

n

n

fp.

`

1
F

Fn−1

n−1

1

n

n

The right subgraph of GF can be derived with the total function rule (tf):

dc.

`
ins.

`
tf.

`
1

n−1
F n

So we can derive GF as well, thus we are done. 2

5 An Example for a Proof with Constants and Functions

In this section, an example for a formal proof with EGIs is provided. We prove a
trivial fact in group theory, namely the uniqueness of neutral elements. Assume
that e1 and e2 are neutral elements, i.e. we have ∀x.x · e1 = e1 = e1 · x and
∀x.x · e2 = e2 = e2 · x. From this we can conclude e1 = e2.

In the following, a formal proof with EGIs for this fact is provided. We assume
that e1, e2 are employed as constant names and · as function name.

We start with the assump-
tion that e1, e2 are neutral el-
ements, i.e.

.1 2
3

.
3

2 1

1e .1 2
3

.
3

2 1

e2

Erasure yields:
1e.1 2

3
. e2

3
2 1

First, we insert e1 and e2 (i.e.,
edges which are labeled with
e1 and e2) as follows:

.1 2
3

1ee2
. e21e

3
2 1

The edges are iterated:
.1 2

3
1ee2

e2

.2 1
3

2ee1
e1

Now we can remove the iden-
tity edges with the constant
identity rule.

.1 2
3

1ee2
e2

.2 1
3

2ee1
e1

The next graph is derived with
the existence of constants rule. .1 2

3
1e

e2

.2 1
3

2e
e1

Next, we remove the double
cuts and rearrange the graph.

e2
.

1e

e2 1e.

2
3

1

21
3

We can insert identity edges
with the constant identity
rule.

e2
.

1e

e2 1e.

2
3

1

21
3

The functional property rule
now allows to add another
identity edge.

e2
.

1e

e2 1e.

2
3

1

21
3

The erasure rule finally yields: e2 1e

As this graph expresses that e1 and e2 are identical, we are done.

6 Discussion and Outlook

Existential graphs should not be understood as a diagrammatic version of the
specific form of FO where only relations are used. Instead, they can be modified
to suit other purposes as well. In this paper, it has been shown how they have to
be modified to cover constants and functions as well. Together with the general,
formal elaboration of existential graphs in [Dau06b], we see that the systems
conforms the needs of contemporary formal logic.

The approach presented in this paper is somewhat generic Al. Nonetheless, the
set of the new rules depends on the syntactical implementation of constants and
functions. In CGwCs, constant names are assigned to the vertices instead of the
edges. Although the expressivity of the system remains the same, we have new
syntactical possibilities to express a given statement. For this reason, further
rules in the calculus are needed. A deep discussion on this can be found in
[Dau06b].

Further research is in progress to show how existential graphs can be tailored
to formalize other kinds of logics as well. For example, for Description Logics,
such an approach is started in [DE06], where the syntax and semantics of an
fragment of existential graphs is provided which corresponds to the Description
Logic ALCI, which is basically the smallest propositionally closed DL. Further
research, which will probably take advantage of the gamma part of existential
graphs, will be undertaken to provide an adequate calculus is well.

References

[Bur91] Robert W. Burch. A Peircean Reduction Thesis: The Foundation of Topo-
logical Logic. Texas Tech. University Press, Texas, Lubbock, 1991.

[CM92] M. Chein and M.-L. Mugnier. Conceptual graphs: Fundamental notions.
Revue d’Intelligence Artificiell, 6:365–406, 1992.

[CM95] M. Chein and M.-L. Mugnier. Conceptual graphs are also graphs. Technical
report, LIRMM, Université Montpellier II, 1995. Rapport de Recherche
95003.

[Dau02] Frithjof Dau. An embedding of existential graphs into concept graphs with
negations. In Uta Priss, Dan Corbett, and Galia Angelova, editors, ICCS,
volume 2393 of LNAI, pages 326–340, Borovets, Bulgaria, July, 15–19, 2002.
Springer, Berlin – Heidelberg – New York.

[Dau03] Frithjof Dau. The Logic System of Concept Graphs with Negations and its
Relationship to Predicate Logic, volume 2892 of LNAI. Springer, Berlin –
Heidelberg – New York, November 2003.

[Dau06a] Frithjof Dau. Fixing shin’s reading algorithm for peirce’s existential graphs.
In Dave Barker-Plummer, Richard Cox, and Nik Swoboda, editors, Dia-
grams, volume 4045 of LNAI, pages 88–92. Springer, Berlin – Heidelberg –
New York, 2006.

[Dau06b] Frithjof Dau. Mathematical logic with diagrams, based on the existen-
tial graphs of peirce. Habilitation thesis. To be published. Available at:
http://www.dr-dau.net, 2006.

[Dau06c] Frithjof Dau. The role of existential graphs in peirce’s philosophy. In Peter
Øhrstrøm, Henrik Schärfe, and Pascal Hitzler, editors, ICCS, pages 28–41.
Aalborg University Press, 2006.

[Dau06d] Frithjof Dau. Some notes on proofs with alpha graphs. In Peter Øhrstrøm,
Henrik Schärfe, and Pascal Hitzler, editors, ICCS, volume 4068 of Lecture
Notes in Computer Science, pages 172–188. Springer, Berlin – Heidelberg –
New York, 2006.

[DE06] Frithjof Dau and Peter Eklund. Towards a diagrammatic reasoning system
for description logics. Submitted to the Journal of Visual Languages and
Computing, Elsevier. Available at www.kvocentral.org., 2006.

[HB35] Weiss Hartshorne and Burks, editors. Collected Papers of Charles Sanders
Peirce, Cambridge, Massachusetts, 1931–1935. Harvard University Press.

[PS00] Charles Sanders Peirce and John F. Sowa. Existential Graphs: MS 514
by Charles Sanders Peirce with commentary by John Sowa, 1908, 2000.
Available at: http://www.jfsowa.com/peirce/ms514.htm.

[Rob73] Don D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, The
Hague, Paris, 1973.

[Shi02] Sun-Joo Shin. The Iconic Logic of Peirce’s Graphs. Bradford Book, Mas-
sachusetts, 2002.

[Sow84] John F. Sowa. Conceptual structures: information processing in mind and
machine. Addison-Wesley, Reading, Mass., 1984.

[Sow92] John F. Sowa. Conceptual graphs summary. In T. E. Nagle, J. A. Nagle,
L. L. Gerholz, and P. W. Eklund, editors, Conceptual Structures: current
research and practice, pages 3–51. Ellis Horwood, 1992.

[Sow00] John F. Sowa. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks Cole, Pacific Grove, CA, 2000.

[Zem64] Jay J Zeman. The Graphical Logic of C. S. Peirce. PhD thesis, University
of Chicago, 1964. Available at: http://www.clas.ufl.edu/users/jzeman/.

