
Types and Tokens for Logic with Diagrams

Frithjof Dau

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt, dau@mathematik.tu-darmstadt.de

Abstract. It is well accepted that diagrams play a crucial role in human
reasoning. But in mathematics, diagrams are most often only used for vi-
sualizations, but it is doubted that diagrams are rigor enough to play an
essential role in a proof. This paper takes the opposite point of view: It is
argued that rigor formal logic can carried out with diagrams. In order to
do that, it is first analyzed which problems can occur in diagrammatic sys-
tems, and how a diagrammatic system has to be designed in order to get a
rigor logic system. Particularly, it will turn out that a separation between
diagrams as representations of structures and these structures themselves is
needed, and the structures should be defined mathematically. The argumen-
tation for this point of view will be embedded into a case study, namely the
existential graphs of Peirce. In the second part of this paper, the theoretical
considerations are practically carried out by providing mathematical defini-
tions for the semantics and the calculus of existential Alpha graphs, and by
proving mathematically that the calculus is sound and complete.

1 Motivation and Introduction

The research field of diagrammatic reasoning investigates all forms of human rea-
soning and argumentation wherever diagrams are involved. This research area is
constituted from multiple disciplines, including cognitive science and psychology as
well as computer science, artificial intelligence, logic and mathematics. But it should
not be overlooked that there has been until today a long-standing prejudice against
non-symbolic representation in mathematics and logic. Without doubt diagrams are
often used in mathematical reasoning, but usually only as illustrations or thought
aids. Diagrams, many mathematicians say, are not rigorous enough to be used in a
proof, or may even mislead us in a proof. This attitude is captured by the quotation
below:

[The diagram] is only a heuristic to prompt certain trains of inference; ... it
is dispensable as a proof-theoretic device; indeed ... it has no proper place
in a proof as such. For the proof is a syntactic object consisting only of
sentences arranged in a finite and inspectable area.

Neil Tennant 1991, quotation adopted from [Ba93]

Nonetheless, there exist some diagrammatic systems which were designed for mathe-
matical reasoning. Well-known examples are Euler circles and Venn diagrams. More
important to us, at the dawn of modern logic, two diagrammatic systems had been
invented in order to formalize logic. The first system is Frege’s Begriffsschrift, where
Frege tried to provide a formal universal language. The other one is of more relevance
for this conference, as Sowa’s conceptual graphs are based on them: It is the systems
of existential graphs (EGs) by Charles Sanders Peirce, which he used to study and
describe logical argumentation. But none of these systems is used in contemporary
mathematical logic. In contrast: For more than a century, linear symbolic represen-
tation systems (i.e., formal languages which are composed of signs which are a priori

meaningless, and which are therefore manipulated by means of purely formal rules)
have been the exclusive subject for formal logic. There are only a few logicians who
have done research on formal, but non-symbolic logic. The most important ones are
without doubt Barwise and Etchemendy. They say that

there is no principle distinction between inference formalisms that use text
and those that use diagrams. One can have rigorous, logically sound (and
complete) formal systems based on diagrams.

Barwise and Etchemendy 1994, quotation adopted from [Sh01]

This paper advocates this view that rigor formal logic can carried out by means of
manipulating diagrams. The argumentation for this point of view will be embedded
into a case study, where the theoretical considerations are practically carried out
to formalize the Alpha graphs of Peirce. Although the argumentation is carried out
on EGs, it can be transferred to other diagrammatic systems (e.g., for conceptual
graphs) as well.

For those readers who are not familiar with EGs, Sec. 2 provides a short introduc-
tion into EGs. There are some authors who explored EGs, e.g. Zeman, Roberts or
Shin. All these authors treated EGs as graphical entities. In Sec. 3, some of the
problems which occur in this handling of EGs are analyzed. For this, the approach
of Shin (see [Sh01]) will be used. It will turn out that informal definitions and a
missing distinction between EGs and their graphical representations are the main
problems. In fact, due to this problems, Shin’s (and other authors as well) elabo-
ration of EGs is from a mathematicians point of view insufficient and cannot serve
as diagrammatic approach to mathematical logic. I will argue that a separation
between EGs as abstract structures and their graphical representations is appropri-
ate, and that a mathematical definition for EGs is needed. A question which arises
immediately is how the graphical representations should be defined and handled. In
Secs. 4 and 6, two approaches to solve this question are presented. It will be shown
that a mathematical formalization of the graphical representations may cause a new
class of problems. In Sec. 5 we will discuss why mathematical logic does not have
to cope with problems which arise in diagrammatic systems. It will turn out that
the preciseness of mathematical logic is possible although the separation between
formulas and their representation is usually not discussed. From this result we draw
the conclusion that a mathematical formalization of the diagrammatic represen-
tations of EGs is not needed. In Sec. 6, the results of the preceding sections are
brought together in order to describe my approach for a mathematical foundation
of diagrams. In the remaining sections, the results of the theoretical discussion are
applied to elaborate mathematically a complete description of the Alpha-part of
EGs.

2 Existential Graphs

In this paper, we consider the Alpha- and Beta-part of existential graphs. Alpha
is a system which corresponds to the propositional calculus of mathematical logic.
Beta builds upon Alpha by introducing new symbols to Alpha, and it corresponds
to first order predicate logic (FOPL), that is first order logic with predicate names,
but without object names and without function names.

We start with the description of Alpha. The EGs of Alpha consist only of predi-
cate names of arity 0, which Peirce called medads, and of closed, double-point-free
curves which are called cuts and used to negate the enclosed subgraph. Medads can

2

be considered as (atomar) propositions, i.e., they correspond to propositional vari-
ables in propositional logic. Propositions can be written down on an area (Peirce
used the term ‘scribing’ instead of ‘writing‘), and writing down a proposition is to
assert it. The area where the proposition is written on is what Peirce called the
sheet of assertion. It may be a sheet of paper, a blackboard or any other surface.
Writing several propositions next to each other (this operation is called a juxtaposi-
tion) asserts the truth of each proposition, i.e. the juxtaposition corresponds to the
conjunction of the juxtaposed propositions. For example, writing the propositions
‘it rains’ and ‘it is cold‘ next to each other yields the graph

it rains it is cold

which means ‘it rains and it is cold’.

Encircling a proposition is to negate it. The line which is used to encircle a propo-
sition is called a cut, the space within a cut is called its close or area. For example,

it rains it is cold

has the meaning ‘it is not true that it rains and that it is cold’, i.e. ‘it does not rain
or it is not cold’. Cuts may not overlap, but they may be nested. The next graph
has two nested cuts.

it rains it is cold

This graph has the meaning ‘it is not true that it rains and that it is not cold’, i.e.
‘if it rains, then it is cold’. The device of two nested cuts is called a scroll. From
the last example we learn that a scroll can be read as an implication. A scroll with
nothing on its first area is called double cut (it corresponds to a double negation).
As mentioned before, the space within a cut is called the area of the cut. In the
example above, we therefore have three distinct areas: All the space outside the
outer cut, i.e. the sheet of assertion, the space between the outer and the inner cut,
which is the area of the outer cut, and the space inside the inner cut, which is the
area of the inner cut. An area is oddly enclosed if it is enclosed by an odd number
of cuts, and it is evenly enclosed if it is enclosed by an even number of cuts.

We have the possibility to express conjunction and negation of propositions, thus
Alpha has the expressiveness of propositional logic. Peirce also provided a set of five
derivation rules for EGs. For Alpha, these rules are:

– Erasure: Any evenly enclosed subgraph may be erased.
– Insertion: Any graph may be scribed on any oddly enclosed area.
– Iteration: If a subgraph G occurs on the sheet of assertion or in a cut, then a

copy of G may be scribed on the same or any nested area which does not belong
to G.

– Deiteration: If a subgraph G could be the result of iteration, then it may be
erased.

– Double Cut: Any double cut may be inserted around or removed from any graph
of any area.

This set of rules is sound and complete. In the following, a simple example of a
proof is provided (which will be an instantiation of modus ponens in EGs).

Let us start with the graph on the
right. It has the meaning ‘it rains,
and if it rains, then it is cold’.

it rains it is coldit rains

3

The inner instance of ‘it rains’ may
be considered a copy of the outer
instance of ‘it rains’. Hence we can
erase the inner instance of ‘it rains’
using the deiteration-rule.

it rains it is cold

This graph contains a double cut,
which now may be removed.

it rains it is cold

Finally we erase the proposition ‘it
rains’ with the erasure-rule.

it is cold

So the graph with the meaning ‘it rains, and if it rains, then it is cold’ implies the
graph with the meaning ‘it is cold’.

If we go from the part Alpha of EGs to the part Beta, predicate names of arbitrary
arity may be used, and a new syntactical item, the line of identity (LI), is introduced.
LIs are used to denote both the existence of objects and the identity between objects.
They are attached to predicate names and drawn bold. Consider the following graph:

man loves woman

It contains two LIs, hence it denotes two (not necessarily different) objects. The
first LI is attached to the unary predicate ‘man’, hence the first object denotes a
man. Analogously the second LI denotes a woman. Both lines are attached to the
dyadic predicate ‘loves’, i.e. the first object (the man) stands in the relation ‘loves’
to the second object (the woman). The meaning of the graph is therefore ‘there are
a man and a woman such that the man loves the woman‘, or in short: A man loves
a woman.

LIs may cross cuts.1 Consider the following graphs:

man man man

The meaning of the first graph is clear: it is ‘there is a man’. The second graph is
built from the first graph by drawing a cut around it, i.e. the first graph is denied.
Hence the meaning of the second graph is ‘it is not true that there is a man’, i.e.
‘there is no man’. In the third graph, the LI begins on the sheet of assertion. Hence
the existence of the object is asserted and not denied. For this reason the meaning
of the third graph is ‘there is something which is not a man’.

Now we have the possibility to express existential quantification, predicates of ar-
bitrary arities, conjunction and negation. Hence we see that the part Beta of EGs
corresponds to FOPL.

Essentially, the rules of the calculus for Beta are extensions of the five rules for
Alpha such that they now encompass the properties of the lines of identity. For
example, the erasure-rule and the insertion-rule are now formulated as follows:

– Erasure: Any evenly enclosed graph and any evenly enclosed portion of a LI
may be erased.

1 This is not fully correct: Peirce denies that a LI may cross a cut (a corollary in [Pe03]
states ’It follows that no line of identity can cross a cut.’), Roberts allows it, and it
is not clear whether Shin allows it or not. In Peirce’s view, the third graph has two
lines of identity which ‘meet’ at the cut. But the discussion of this needs a much deeper
understanding of EGs and shall therefore be omitted here.

4

– Insertion: Any graph may be scribed on any oddly enclosed area, and two LIs
(or portions of lines) oddly enclosed on the same area, may be joined.

For the formulation of the remaining three rules we refer to [Ro73] (we have taken
the other formulations of the rules from this source).

3 Problems with Existential Graphs

To illustrate some of the problems which may occur in the handling of diagrams,
we focus on the EGs as they are described in the book of Shin ([Sh01]), but we will
refer to other authors like Peirce, Zeman or Roberts as well. For our discussion, it
is sufficient to consider the definitions Shin provides for Beta graphs. It is labelled
‘Non-Math.(ematical) Definition’ to distinguish it from mathematical definitions as
they will appear later in this paper.

Non-Math. Definition 1 (Beta Graphs)

The set of beta graphs, Gβ, is the smallest set satisfying the following:

1. An empty space is in Gβ.
2. A line of identity is in Gβ.
3. Juxtaposition closure If G1 is in Gβ, . . ., and Gn is in Gβ, then the juxtaposi-

tion of these n graphs, i.e. G1, . . . , Gn, (we write ’G1 . . . Gn’ for juxtaposition)
is also in Gβ.

4. Predicate closure If G is in Gβ, then a graph with an n-ary predicate symbol
written at the joint of n loose ends in G is also in Gβ.

5. Cut closure If G is in Gβ, then a graph in which a single cut is drawn in
any subpart of G without crossing a predicate symbol is also in Gβ.

6. Branch closure If G is in Gβ, then a graph in which a line of identity in G
branches is also in Gβ.

There are two points remarkable in this definition:

1. Although some mathematical terms are used, the definitions are formulated
more or less in common spoken language and cannot be seen as mathematical
definitions.

2. EGs are considered to be graphical entities (this can particularly seen in the cut
closure rule for Beta graphs).

This approach, particularly the two points mentioned above, yields different kinds
of problems which shall be elaborated in this section. We start with problems caused
by the use of common language.

First of all, many important technical terms are defined either in an insufficient
way or not at all. For example, the terms sentence symbol, juxtaposition or single
cut (this holds already for Shin’s definition of Alpha graphs) as well as the terms
lines of identity, loose ends or branching of LIs are not defined. Even if we have
some pre-knowledge on terms like ‘single cut’ (e.g. we know that a single cut is a
closed, double-point-free curve on the plane) or LIs, these definitions leave some
issues open. E.g., is it not clear whether two cuts may touch, cross, intersect, or
partly overlap, or whether a LI may terminate on a cut. For example, we might ask
which of the following diagrams are well-defined diagrams of Beta graphs:

P PQ P Q

5

Examining the first three examples, in Shin’s book we do not find any example
of an Beta graph where a LI terminates on a cut. But, in contrast, this case is
explicitly investigated in Peirce’s manuscripts or in the book of Roberts. The fourth
example is not explicitly excluded by Shin, but it is implicitly excluded based on
the background a reader should have of EGs. Considering the fifth example, Peirce
used to draw to nested cuts, i.e., scrolls, as follows: . So it seems that a touching
of cuts is allowed. But we can raise the question whether scrolls should be handled
as own syntactical devices, or whether Peirce’s drawing is a sloppy version of two
nested cuts which do not touch, i.e. of . So we have to make a decision whether
cuts may touch or not.

Answering these question is not only about deciding whether a diagram is an EG or
not. It is even more important to have rigor definitions for all technical terms when
transformation rules, e.g. the rules of a calculus, are applied to EGs. An important
example for this is the in most publications undefined term subgraph. A rule in the
calculus allows us to scribe a copy of a subgraph in the same cut (this is a special
case of the iteration-rule), which occurs in the treatises of Peirce, Shin, Roberts,
and later on in this paper.

To get an impression of the problems, we raise
some simple questions on subgraphs. Consider
the Alpha graph on the right:

Gα := A AB

In order to know how the iteration-rule can be applied, it must be possible to answer

the following questions: Is B a subgraph of Gα? Is A A a

subgraph of Gα? Do we have one or two subgraphs A of Gα (this is a question
which corresponds to the distinction between subformulas and subformula instances
in FOPL)?

For Beta, it is important to know how LIs are
handled in subgraphs. Consider the following
Beta graph:

Gβ := Q
P
R

We might ask which of the following diagrams are subgraphs of Gβ :

Q
P
R

Q P
R

Q
P
R

Shin (and other authors) does not offer a definition for subgraphs: The answer of
the questions above is left to the intuition of the reader. From the discussion above,
we draw a first conclusion:

Thesis 1: The definitions of Shin (and other authors) are insufficient for a
precise understanding and handling of existential graphs.

If EGs are considered as graphical entities, a new class of difficulties has to be coped
with. Consider again Gα. Remember that the iteration-rule should allow us to draw
a copy of the subgraph A into the outer cut. But if we want to understand EGs
and subgraphs as (graphical) diagrams, then this is obviously not possible, because
in the outer cut, there is simply not enough space left for another copy of A . But,
of course, this is not intended by the rule, and everybody who is familiar with EGs

will agree that A A AB is a result of a valid application of the iteration-

rule. Why that? The idea behind is that we may change the shape of LIs or cuts
to a ’certain degree’ without changing the meaning of an EG. For this reason it is
evident that any attempt which tries to define EGs as purely graphical entities runs
into problems.

6

For a discussion of the term ’certain degree’, consider the three Alpha graphs in
Figure 1. From the left to the right, we decrease the size of the outer cut. Thus

A AB A AB A AB

Fig. 1. Diagrams of Alpha graphs

there are obviously visual differences between these three diagrams. The question
is whether the differences between the first two diagrams are comparable to the
differences between the last two diagrams. We have already seen that the shape of
a cut is – in some sense – of no relevance. The only thing we have to know is which
other items of a graph are enclosed by the cut and which are not. Thus we see that
the first two diagrams are (in some sense) the same graph, particularly they have
the same meaning. In contrast to that the third diagram has a different meaning
and has therefore to be treated differently.

If we – due to the visual differences – treat the first two diagrams to be syntactically
different, we would get a syntax which is much too fine-grained. Any kind of equiv-
alence between graphs would be postponed to the semantical level. Furthermore,
we would need transformation rules which allow to transform the first graph into
the second graph (and vice versa). This syntax would become very complicated and
nearly unusable. Thus we see that any appropriate syntax should not distinguish
between the first two diagrams.

Now the question arises which properties of the first two diagrams cause us to
identify them. Should we syntactically identify graphs when they have the same
meaning? This would inappropriately mix up syntax and semantics. For example,
the empty sheet of assertion and the graph have the same meaning, but they
should obviously be syntactically distinguished.

In defining a reasonable syntax for the graphs, we see that we have to prescind
from certain graphical properties of the diagrams (e.g. the form of a cut), while
other properties are important (e.g. the number of cuts and other items, or whether
an item of the diagram is enclosed by a cut or not). Particularly, EGs should not
be understood as graphical entities at all. Instead of this, we have to distinguish
between graphs and the diagrams which represent the graphs. This is according
to Peirce’s view. He says: ’A graph [. . .] is a symbol, and, as such, general, and
is accordingly to be distinguished from a graph-replica.’ Thus, Peirce distinguishes
between graphs, which are so-to-speak abstract structures, and their representations.
Due to this understanding, the first two diagrams in Figure 1 are not different
graphs with the same meaning, but different representations, i.e., diagrams, of the
same graph, and the third diagram is a representation of a different graph. Peirce
explicitly said that arbitrary features of the diagrams may vary, as long as they
represent the same diagram. At the beginning of [Pe03] he says:

Convention No. Zero. Any feature of these diagrams that is not expressly or
by previous conventions of languages required by the conventions to have
a given character may be varied at will. This convention is numbered zero,
because it is understood in all agreements.

For LIs, he says even more explicit in [Pe03] that ‘its shape and length are matters
of indifference.’

7

The distinction between graphs and graph-replicas obviously corresponds to the
distinction between types (graphs) and tokens (graph replicas), as it is known from
philosophy. The type-token issue if far from being settled; nonetheless, this impor-
tant distinction helps us to draw our next conclusion:

Thesis 2: EGs should not be defined as graphical entities. Instead of that,
we need a definition of EGs which copes exactly the crucial features of EGs,
and the diagrams should be understood as (mere) representations of an
underlying EG.

Roughly sketched, we now have the following situation:

Type

Token

Ex. Graph

Ex. Graph Replica

Math. Structure

Diag. Represent.

Semiotics Peirce
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

This Paper

represents represents represents

corresponds to

corresponds to

corresponds to

corresponds to
� -

� -

� -

� -

666

4 The First Approach to Diagrams

One of the most important features of mathematics is its preciseness. The pre-
ciseness of mathematics is based on a very strict understanding of mathematical
definitions and proofs. We have seen that the informal definitions of EGs lead to
problems in their understanding and handling. I claim that mathematics is the best
language to cope with problems of these kind, i.e.:

Thesis 3: Mathematics provides the highest level of precision available for
definitions and proofs.

Thus, in my view, mathematics turns out to be the best instrument for coping the
problems discussed in Sec. 3. Particularly, EGs should be defined as mathematical
structures (and these structures prescind certain graphical features from diagrams),
and the diagrams are representations for these structures. Nonetheless, the last
thesis raises the question whether the graph replicas, i.e., the diagrams of EGs,
should be defined mathematically as well. This approach shall be discussed in this
section.

Let us assume we want to define the graphical representations of Alpha or Beta
graphs mathematically. Then we would have two different kinds of objects: Math-
ematical structures which model EGs, and mathematical structures which model
the representations of EGs, i.e., the diagrams. Let us call the first structures type-
structures and the second structures token-structures. In finding a definition for the
token-structures, we have two fundamental problems to cope with: First to find a
definition for the token-structures which encodes the informally given diagrams as
best as possible. Secondly, we have to show how the type-structures are represented
by the token-structures. It should be possible to show that each token-structure rep-
resents uniquely a type-structure, and that each type-structure is represented by at
least one token-structure. Let us call these two principal problems representation
problem.

8

An obvious approach is to model the lines of an EG (i.e., the cuts and the LIs) as
families of curves in the Euclidean plane R2. For example, we can model each LI by
a smooth, double-point-free curve and each cut by a by a smooth, double-point-free
and closed curve.2 Consider the fist two graphs of Figure 1. They are two different
tokens of the same type. Diagrams like these shall be called type-equivalent (this
term is adopted from [HS02]).

If we define type-equivalence, we have to refer to the relationship between types and
tokens. But the diagrams can be compared directly as well. If we consider again the
first two graphs of Figure 1, we see that we have mappings from the cuts resp.
the occurences of propositional variables from the first graph to the second which
fulfill certain conditions. For example, the mappings are bijective and the preserve
some entailment-relations (e.g. if an occurence of a propositional variable or a cut is
enclosed by a cut, then this holds for the images as well). In some sense, we can say
that the first graph can be topologically transformed into the second graph. Graphs
like this shall be called diagrammatically equivalent (again, this term is adopted from
[HS02]). If we have found adequate definitions for the type- and token-structures
as well as for the relation ‘a token-structure represents a type-structure’, it should
be mathematically provable that being type-equivalent and being diagrammatically
equivalent means the same.

In any description of the diagrams, particularly if we provide a mathematical def-
inition for them, we have to decide some of the bordercases we have discussed in
Sec. 3. For example, we have to decide whether (and how often) LIs may touch
cuts, or whether cuts may touch or even intersect each other. But in no (reason-
able) mathematical definition, we can encode all graphical properties of a diagram
directly (e.g. by curves). This is easiest to see for letters or words, i.e. the occurences
of propositional variables in Alpha graphs or for the relation names in Beta graphs.
Of course the location of the occurence of a propositional variable in an Alpha graph
is important, but neither the size or the font of the propositional variable will be
of relevance. Similar considerations hold for relation names in Beta graphs. As the
shape of propositional variables or relation names should not be captured by the
definition of the diagrams, it is reasonable to handle these items in a different way.
The question arises how much of the properties of these items has to captured by
a definition of the diagrams. For example, the occurences of propositional variables
in an Alpha graph could be modelled by points or spots of the Euclidean plane to
which we assign the variables. We see that even in the definition for the diagrams,
we have to prescind certain graphical features from diagrams.

On the other hand: If we try to capture graphical properties of diagrams, some of
the items of a diagram will probably be overspecified. For example, how should a
simple line of identity – i.e., – be modelled mathematically? We already said
that LI could be modelled by a curve in the Euclidean plane. But when a diagram
is given, it is usually drawn without providing a coordinate system. Thus, which
length should this curve have? Where in the Euclidean plane is it located? Again
we see that we cannot capture a diagram exactly by a mathematical definition.

Finally, it is worth to note that we have a couple of (unconscious) heuristics in draw-
ing diagrams for EGs. A simple example is that pending edges should be drawn ‘far
away enough’ from any relation-signs. To see this, consider the following diagrams:

2 It should be noted that Peirce’s understanding of EGs depends on his understanding
of the continuum, and this understanding is very different from the set R. Nevertheless
a mathematization of the diagrams as a structure of lines and curves in R2 is conve-
nient as R2 is the standard mathematization of the Euclidean plane in contemporary
mathematics.

9

P Q QP QQ PP

The leftmost diagram should be understood as ‘There is thing which is P which is
in relation Q to another thing’, The rightmost diagram should be understood as
‘There is thing which is P and there is thing which is Q’. But the meaning of the
diagrams in the middle is not clear. So, one will avoid drawing diagrams like these.

Another heuristic is to draw a diagram as simple as possible. Furthermore, although
we have seen that neither the size or the font of the propositional variable or a
relation name will be of relevance, it is clear that the choice of a font and its size is
not arbitrary if a diagram is drawn in a convenient way. This should became clear
with the following three diagrams:

smallbluesmallblue blue small

Although all diagrams are representations of the same graph (with the meaning
‘there exists something which is blue, but not small), it is clear that the left-most
diagram is the best representation of these three diagrams. Conventions like these
cannot by captured by any mathematical definition.

Remember that the reason for finding mathematical definitions for diagrams was to
solve the representation problem. We wanted to grasp the distinction between non
well-formed and well-formed diagrams, as well as the relationship between graphs
and their diagrams, as best as possible. We have already seen that we cannot cap-
ture all graphical features of a diagram by a mathematical definition (the more
graphical properties are encompassed by a definition, the more technical overhead
has to be expected). Now the final question is how a mathematically defined dia-
gram is related to a concrete drawing of a diagram on a sheet of paper. This is a
crucial last step from mathematical objects to objects of the real world. Thus, even
if we provide mathematical definitions for the diagrams, we still have a representa-
tion problem. The initial representation problem between mathematically defined
graphs and mathematically defined diagrams has shifted to a representation prob-
lem between mathematically defined diagrams and diagrams – i.e., drawings – in the
real world. A mathematical definition for diagrams can clarify a lot of ambiguities,
but it cannot solve the representation problem finally.

5 Linear Representations of First Order Predicate Logic

In the last section we have raised some questions concerning the representation
problem, and we have seen that mathematics alone is not enough to solve these
problems. It is likely the often unclear relationship between diagrams and repre-
sented structures which causes mathematicians to believe that diagrams cannot
have a proper place in mathematical argumentation, esp. proofs. It is argued that
only a symbolic system for logic can provide the preciseness which is needed in
mathematical proofs (for a broader discussion of this see [Sh01]). It seems that the
problems we have discussed in the last section simply do not occur in mathematics,
esp. mathematical logic. In this section we will have a closer look on this. We start
with a definition of the well-formed formulas of FOPL.

10

Definition 2. The alphabet for first order logic consists of the following signs:

– Variables: x1, x2, x3, . . . (countably many)
– Relation symbols: R1, R2, R3, . . . (countably many). To each predicate symbol Ri

we assign an arity ar(Ri) ∈ N.
– Constant symbols: c1, c2, c3, (countably many)
– Connectives: ∧,¬,∃
– Auxiliary Symbols: ., , , (,)

Definition 3. The formulas of FOPL are inductively defined as follows:

1. Each variable and each constant name is a term.
2. If R is a predicate symbol with arity n and if t1, . . . , tn are terms, then f :=

R(t1, . . . ,tn) is a formula.
3. If f ′ is a formula, then f := ¬f ′ is a formula.
4. If f1 and f2 are formulas, then f := (f1∧f2) is a formula.
5. If f ′ is a formula and α is a variable, then := ∃α.f ′ is a formula.

It is easy to capture the idea behind this definitions: First, we fix a set of signs,
and a formula is a sequence of these signs which has been composed according to
certain rules.

Let us consider the following two strings (the relation name R1 has arity 2):

∃x1.∃x2.R1(x1, x2)
∃x1. ∃x2. R1(x1, x2)

Although these two strings are written in different places and although they look
slightly different, they clearly represent the same formula. For our considerations, it
is worth to raise the question which steps a reader has to pass from the perception
of a string to the identification of a formula which is represented by the string.
Roughly spoken, if a reader reads the two strings above, she passes the following
steps:

1. The region on the paper (the blackboard, . . .) must be identified where the
representation of the formula is written on. In the example above, this is possible
because we have written the two different strings into two different lines.

2. In this region, we must be able to identify representations of the signs which
may occur in a formula (e.g. the sign ‘∃’, which appears twice, or the sign ‘R1’,
which appears only once). Nothing else may occur.

3. The representations of the signs must be assembled in a way such that we are
able to identify their ordering on the region. That is: We must be able to identify
the sequence. For our examples, we identify the ordering of the instances of signs
by reading them from left to right.

4. Finally, after we have reconstructed the sequence of signs (internally), we can
check whether this sequence is a well-defined formula, i.e., whether it is com-
posed with the rules of Definition 3.

In the following, we will use the label (∗) to refer to these four steps. The process (∗)
yields the same result for the two strings above: In both cases, the lines represent
the same sequence of signs, which is in fact a well-formed formula. Thus every
mathematician would (hopefully) agree that these two strings represent the same
(well-defined) formula.

11

We want to stress that the process of perceiving a representation of a formula is
not ‘deterministic’: It is not clear without ambiguity for each string whether it
represents a formula or not. To see this, consider the following strings (the ‘type-
setting problems’ are intended). The question is: Which of these strings represents
a well-defined formula?

∃x1∃.x2.R1(x1,x2) (1)

∃
x1

.
∃
x2

.
:

R1(
x1

,x2

) (2)

∃x1.∃♥.R1(x1, x2) (3)
),∃..R1x1∃x1(x2x2 (4)
∃x1 .∃x2 .R1(x1, x2) (5)
∃x1.∃x2.R1(x1,x2) (6)
∃x1.∃x2.R1(x1, x2) (7)
∃x1. ∃x2 .R1(x1, x2) (8)
∃ x1. ∃x2.R1(x1, x2) (9)

In line 1, we are neither able to identify the signs, nor to identify their ordering.
That is we cannot pass the steps (2) and (3) of (∗), thus this line does not represent
a formula. In line 2, we are able to identify the signs, but we are not able to identify
their ordering. That is we cannot pass the step (3) of (∗), thus this line does not
represent a formula as well. Moreover, it may be doubted whether step 1 of (∗) can
be passed without problems. In line 3, we are able to identify the signs, but one of
these signs does obviously not belong to our alphabet of first order logic, thus this
line does not represent a formula. In line 4, we are able to identify the signs, all
of them belong to to our alphabet of first order logic, and we are able to identify
their ordering, that is we reconstruct a sequence of signs of our alphabet. But we
see that this sequence is not build according to our rules (we cannot pass the step
(4) of (∗).). Thus this line does not represent a formula. In the remaining lines, it is
not uniquely determined whether the lines represent a formula or not. In line 5, the
font for the variables has changed. In mathematical texts, different fonts are often
used to denote mathematical entities of different kinds, but this is not a general
rule. So it depends on the context whether lines 5 or 6 are accepted to represent
formulas. Using different sizes of a font is usually driven by a specific purpose. The
same holds for the use of significantly different distances between signs. It is hardly
conceivable to find a purpose for using different font sizes or significantly different
distances in formulas. Thus it is possible, but not sure, that the lines 7–9 are not
accepted by a mathematician to represent a formula.

In standard books on logic, usually only the last step of (∗) is discussed. The main
reason for this is the following: The linear notion of formulas corresponds the way
ordinary text is written: Text is assembled of letters which are written side by side
and which are read from left to right. As we are used to read texts, we are trained
as well to read strings which shall represent formulas. Thus the first three steps of
(∗) are unconsciously executed when we perceive a representation of a formula.

But as soon we perceive an unfamiliar representation (like in the strings 1-9), we
become aware of the whole process described by (∗). We realize that mathemati-
cal structures need representations, and in mathematics we have a clear separation
between structures and their representations. The representations rely on conven-
tions, either implicit or explicit, based on common cultural background as well as on
mathematical socialization, and they are not fully explicated. Nonetheless, this usu-
ally poses no problems: Although these conventions can never be fully explicated,

12

as long as we provide representations of mathematical structures in accordance to
these conventions, they are strong enough to provide a secure transformation from
the external representation of a structure (e.g. on a sheet of paper or on a black-
board) into an internal representation of any mathematician, i.e., they refer to the
represented structures in a clear and and non-ambiguous way (as Barwise says in
a broader discussion of representations: ’Every representation indicates a genuine
possibility’ [Ba93]).

The next thesis claims that this approach can be adopted for diagrammatic systems.

Thesis 4: In a mathematical theory, the mathematical structures need rep-
resentations. A rigor mathematical theory can be developed without pro-
viding mathematical definitions for the representations. Instead of that, it
is sufficient if we have conventions – either implicit or explicit — which
describe the representations, as well as the relationship between structures
and their representations, in a clear and non-ambiguous way.

6 The Second Approach to Diagrams

In Sec. 3, we have argued that in literature, EGs are described in an informal and
insufficient way (Thesis 1). Furthermore, we should not mix up graphs and their
representations. Particularly, EGs should be defined as formal structures and not as
graphical entities (Thesis 2). Thesis 3 claims that mathematics is the best method to
describe formal structures. From this we can conclude that EGs should be defined
as mathematical structures. Nonetheless, we haven’t already solved the question
whether the representations should be defined mathematically as well.

In Sec. 4, we presented some difficulties when we try to define the diagrams math-
ematically. The arguments of Sec. 4 are not strong enough to claim that a mathe-
matical definition of diagrams will always run into problems. In contrast: Finding
a appropriate mathematical definition for the diagrams should clarify the points
mentioned in Sec. 3. That is a mathematical definition would make clear without
ambiguities which diagrams should be considered to be well-formed diagrams of
EGs, and which not. Furthermore, the relation between graphs and their repre-
sentations can be elaborated mathematically as well. But providing mathematical
definitions for the diagrams may result in a technical overhead or overspecifica-
tion of the formalization of EGs and their representations, and none mathematical
definition can solve the representation problem finally.

On the other hand, as seen in Sec. 5, mathematical logic is a mathematical the-
ory, although the representations of the types in logic, i.e., formulas, are not fully
explicated, but they rely on different conventions.

In contrast to the attempt to capture the representations by mathematical defini-
tions, we have seen that logic is a rigor mathematical theory, although representa-
tions are only captured not fully explicated conventions. This works because these
conventions are mainly based on a common and solid cultural background, namely
the form how text is presented. For diagrams, we have a lack of conventions.

Thus, in both approaches, we have to provide a set of conventions on how dia-
grams are written. Particularly for EGs, we have to make clear without ambiguities
which diagrams shall be considered to be well-formed diagrams of EGs. In the first
approach, these conventions are provided informally in common language. In the
second approach, these conventions are described by a mathematical definition.
Thus, the mathematical definition should capture as best as possible the informally

13

provided conventions of the first approach. The advantage of a mathematical def-
inition is its preciseness, but we gain this preciseness for the cost of a technical
overspecification of the diagrams. Furthermore, we have seen that a mathematical
definition cannot capture exactly the diagrams.

As already said above, arguments like these are not strong enough to generally
discard mathematical definitions for the token-structures. It has to be estimated
whether a mathematical definition is really needed, or whether the conventions for
drawing diagrams and for the relationship between representing diagrams and repre-
sented structures can be captured sufficiently by descriptions in common language.
If the latter is possible, we are able to gain the rigorousness and preciseness of a
mathematical theory without a technical overspecification of the diagrams. Thus,
in this case, I claim that this approach should be preferred.

We have already mentioned that the Alpha system of EG is said to be equivalent
to propositional logic, the Beta system of EG is said to be equivalent to first order
predicate logic. In fact, we find good arguments for that in the books of Zeman,
Roberts or Shin. But, as EGs are described informal and insufficiently, these ar-
gumentation cannot be seen as (mathematical) proofs. With our approach, we can
solve these problems: If we define EGs as mathematical structures, we are now able
to prove mathematically the equivalences between the Alpha system and the Beta
system to propositional and first order predicate logic, respectively.

In the following section, we exemplify this approach for Alpha graphs. Of course
this is a fairly simple example. Its advantage is that we can work out the definitions
of Alpha and the proof of the equivalence to propositional logic on a couple of pages.
Its disadvantage is that the problems we discussed in Sec. 3 appear much stronger
in Beta, thus the benefit of a mathematical foundation of graphs cannot be seen
that clearly for Alpha. An elaboration of this approach for the Beta system is in
progress (a first step towards Beta can be found in [Da03]).

7 Syntax for Alpha Graphs

Alpha graphs are built up from two syntactical devices: sentence symbols and cuts.
We first fix the sentence symbols, which we call propositional variables.

Definition 4 (Propositional Variables).

Let P := {P1, P2, P3, . . .} be a countably infinite set of propositional variables.

Alpha graphs can be seen to built up from propositional variables and cuts by
an appropriate inductive definition. We can try to transform this into a inductive
mathematical definition. This is possible, but here Alpha graphs are defined in one
step. To emphasize that these structures are abstract structures, not diagrams, they
are termed formal Alpha graphs.

Let us briefly discuss what we have to capture in the mathematical definition.
Consider first the two diagrams depicted in Figure 2.

According to the discussion in Secs. 3–6, these two diagrams represent the same
Alpha graph: In fact, we have a one-to-one-correspondence between the cuts resp.
the occurences of propositional variables in both diagrams such that a cut or an
occurence of a propositional variable is enclosed by another cut in the first diagram
if and only if this holds for their counterpart in the second diagram. For example,
in both diagrams of Figure 2 the outermost cut encloses exactly all other cuts, one
occurence of the propositional variable P2 and all occurences of the propositional

14

4P 4P3P
2P

3P

P1

P1

2P
and 3P 2P 4P 4P3P2PP1P1

Fig. 2. Two Diagrams of the same Alpha graph

variables P3 and P4. We will say more specifically that the occurence of the propo-
sitional variable P2 and the two cuts are enclosed directly, while all other enclosed
items are enclosed indirectly, and we will say that the items which are directly en-
closed by a cut are placed in the area of this cut. It is convenient to say that the
outermost items (the outermost cut, the two occurences of P1 and one occurence
of P2 are placed on the area of the sheet of assertion. This enclosing-relation is the
main structural relation between cuts and the other items of a graph.

A mathematical definition of Alpha graphs must therefore capture the following:

1. A set of occurences of propositional variables,
2. a set of cuts, and
3. the above-mentioned enclosing-relation.

To distinguish between propositional variables and occurences of propositional vari-
ables, we will introduce vertices which are labelled with propositional variables.
This yields the possibility that a propositional variable may occur several times in
a graph, even in the same cut. The cuts are introduced as elements of a set Cut.
It is reasonable to introduce the sheet of assertion as own syntactical device. The
enclosing-relation will be captured by a mapping area, which assigns to each cut
(and to the sheet of assertion) the set of all other elements of the graph which are
directly enclosed by the cut. We know that we have some restrictions for cuts, e.g.
cuts may not overlap. These restrictions are captured mathematically by conditions
for the mapping area. A possible definition for formal Alpha graphs is the following:

Definition 5 (Formal Alpha Graph).

A formal Alpha graph is a 5-tuple (V,>, Cut, area, κ) with

– V and Cut are disjoint, finite sets whose elements are called vertices and cuts,
respectively,

– > is a single element with > /∈ V ∪ Cut, called the sheet of assertion,
– area : Cut ∪ {>} → P(V ∪ Cut) is a mapping such that

a) c1 6= c2 ⇒ area(c1) ∩ area(c2) = ∅ ,
b) V ∪ E ∪ Cut =

⋃
d∈Cut∪{>} area(d),

c) c /∈ arean(c) for each c ∈ Cut ∪ {>} and n ∈ N (with area0(c) := {c} and
arean+1(c) :=

⋃
{area(d) | d ∈ arean(c)}), and

– κ : V → P is a mapping.

The elements of Cut ∪ {>} are called contexts. As we have for every x ∈ V ∪ Cut
exactly one context c with x ∈ area(c), we can write c = area−1(x) for every
x ∈ area(c), or even more simple and suggestive: c = ctx(x).

In this definition, we have already captured some important technical terms. Mainly
we have defined the sheet of assertion and the cuts of formal Alpha graphs, and we
have introduced the informal described mapping area. In the following, we will often
speak more simply of ‘graphs’ instead of ‘formal Alpha graphs’.

15

There is a crucial difference between formal Alpha graphs and most other languages
of logic: Usually, the well-formed formulas of a language are built up inductively.
In contrast to that, formal Alpha graphs are defined in one step. The structure of
a formula in an inductively defined language is given by its inductive construction.
Of course we know that Alpha graphs bear a structure as well: A cut of the graph
may contain other cuts, but cuts may not intersect. Thus, for two (different) cuts,
we have three possibilities: The first cut encloses the second one, the second cut
encloses the first one, or the two cuts are incomparable. If we incorporate the sheet
of assertion into this consideration, it has to be expected that this idea induces an
order ≤ on the contexts which should be a tree, having the sheet of assertion > as
greatest element. As we now have a mathematical definition of Alpha graphs, we
must be able to prove this proposition.3

In the next definition, we define an ordering on the vertices and edges which will
capture the enclosing-relation.

Definition 6 (Ordering on the Contexts).

Let G := (V,>, Cut, area, κ) be a graph. We define a relation ≤ on Cut ∪ {>} as
follows: d ≤ c :⇐⇒ d ∈

⋃∞
n=0 arean(c).

We set x < y :⇐⇒ x ≤ y ∧ y 6≤ x and x � y :⇐⇒ x ≤ y ∧ y 6= x to avoid
misunderstandings. For c ∈ Cut ∪ {>}, we set ≤[c] := {x ∈ V ∪ Cut ∪ {>} |x ≤ c}
and �[c] := {x ∈ V ∪ Cut ∪ {>} |x � c}. Every element x of �[c] is said to be
enclosed by c, and vice versa: c is said to enclose x. For every element of area(c),
we say more specifically that it is directly enclosed by c.

Analogously to [Da03], we get the following lemma:

Lemma 1. Let G := (V,>, Cut, area, κ) be a graph. Then ≤ is an order on Cut ∪
{>} which is a tree with the sheet of assertion > as greatest element.

To provide an example of a formal Alpha graph, we consider the right diagram
of Figure 2. Additionally, we have labelled the vertices and cuts with names for
pairwise distinct elements. Below the diagram, the formal Alpha graph which is
represented by the diagram is provided.

3P 2P 4P 4P3P2PP1P1

c1 c2 c3v1 v4v3v2 v5 c4 v6 c5 v7 c6 v8

G := ({v1, v2, v3, v4, v5, v6, v7, v8},>, {c1, c2, c3, c4, c5, c6},
}

V,>, Cut

{(>, {v1, v2, v3, c1}), (c1, {v4, c2, c3, c4}), (c2, ∅),
(c3, {v5}), (c4, {v6, c5, c6}), (c5, {v7}), (c6, {v8})},

}
area

{(v1, P1), (v2, P1), (v3, P2), (v4, P3),
(v5, P2), (v6, P3), (v7, P4), (v8, P4)})

}
κ

3 As we mathematize informal given entities (here: Alpha graphs), we cannot prove (math-
ematically) that the mathematization, e.g. the definition of formal Alpha graphs, is
’right’. So the attempt to prove that we have an induced tree on the context can be
understood as a test on our mathematical ’re-engineering’ of Alpha graphs. If we cannot
prove this proposition, our mathematization of Alpha graphs does not capture crucial
features of Alpha graphs, thus we should rework the definition. If we can prove this
proposition, this is a good argument that our definition is ‘right’.

16

Next we show the mapping ctx, and the quasiorder ≤ is presented by its Hasse-
diagram.

x v1 v2 v3 v4 v5 v6 v7 v8 c1 c2 c3 c4 c5 c6

ctx(x) > > > c1 c3 c4 c5 c6 > c1 c1 c1 c4 c4

c5 c6

c4c3c2

c1

>

�
�

@
@

�
�

@
@

Note that we did not further specify the objects v1, . . . , v8, >, and c1, , . . . , c6. It is
quite obvious that a diagram of an EG cannot determine the mathematical objects
for vertices or cuts, it only determines the relationships between these objects. In
fact we can choose arbitrary sets for these mathematical objects (we only have to
take into account that {v1, v2, v3, v4, v5, v6, v7, v8}, {>}, {c1, c2, c3, c4, c5, c6} must
be pairwise disjoint). In other words: The diagram of a graph determines the graph
only up to isomorphism. The isomorphism-relation is canonically defined as follows:

Definition 7 (Isomorphism).

Let Gi := (Vi,>i, Cuti, areai, κi), i = 1, 2 be two formal Alpha graphs. Then we
call f = fV

.
∪ fCut isomorphism, if fV : V1 → V2 and fCut : Cut1 ∪ {>1} →

Cut2 ∪ {>2} are bijective with fCut(>1) = >2 such that f [area1(c)] = area2(f(c))
for each c ∈ Cut1∪{>1} (we write f [X] for {f(x) |x ∈ X}), and κ1(v) = κ2(fV (v))
for all v ∈ V1.

From now on, isomorphic graphs are implicitly identified.

We have seen that a diagram of an Alpha graph is a diagram which is built up
from two different kinds of items, namely of closed, double-point-free and smooth
curves which represent cuts (we will call them cut-lines), and signs which denote
the propositional variables Pi, such that two different items of the diagram neither
overlap nor intersect.

Of course each formal Alpha graph can be represented by an appropriate diagram.
This diagram can be constructed iteratively over the tree of its context, using Lem. 1.
Let on the other hand a diagram be given. It is easy to find (up to isomorphism)
the corresponding formal Alpha graph (V,>, Cut, area, κ): We choose sets V and
Cut of which its elements shall stand for the occurences of propositional variables
resp. the cut-lines in the diagram, and the mapping κ is defined accordingly. Then,
the mapping area area is now defined as follows: Let c ∈ Cut be a cut. So we have
a uniquely given cut-line cl in our diagram which corresponds to c. Now let area(c)
be the set of all x ∈ V

.
∪ Cut such that x corresponds to an item of the diagram

(an occurence of a PV or a cut-line) which is directly enclosed by the cut-line cl.
Furthermore, let area(>) be the set of all x ∈ V

.
∪ Cut such that x corresponds to

an item which is not enclosed by any cut-line. So we obtain a formal Alpha graph
which is represented by the diagram. (The correspondence between formal Alpha
graphs and diagrams can be much more explicated, but this is omitted due to space
limitation).

Next we will define mathematically what a subgraph of a formal Alpha graph is.

Definition 8 (Subgraph).

Let G := (V,>, Cut, area, κ) be a graph. The graph G′ := (V ′,>′, Cut′, area′, κ′) is
called a subgraph of G in the context >′ if

17

– V ′ ⊆ V , Cut′ ⊆ Cut and >′ ∈ Cut ∪ {>} ,
– area′(>′) = area(>′) ∩ (V ′ ∪ Cut′) and area′(d) = area(d) for each d ∈ Cut′,
– ctx(x) ∈ Cut′ ∪ {>′} for each x ∈ V ′ ∪ Cut′, and
– the mapping κ′ is the restriction of κ to V ′.

We write: G′ ⊆ G and area−1(G′) = >′ resp. ctx(G′) = >′.

We provide some examples for this definition, based on the graph of Figure 2. We
consider substructures of this graphs which are shaded in the diagram.

3P 4P 4P3P2PP1P1 2P ,
3P 4P 4P3P2PP1P1 2P

Fig. 3. Different subgraphs

3P 4P 4P3P2PP1P1 2P ,
3P 4P 4P3P2PP1P1 2P

Fig. 4. Two substructures which are no subgraphs

If we consider a graph and a context of this graph, then this context together with
all cuts and vertices enclosed by this context form a subgraph. This is a special case
for subgraphs which is captured by the following definition and lemma.

Definition 9 (Subgraph induced by a Cut).

Let G := (V,>, Cut, area, κ) be a formal Alpha graph and c ∈ Cut∪{>} be a context.
The graph G[c] := (V ′,>′, Cut′, area′, κ′) is defined as follows: V ′ := ≤[c] ∩ V ,
Cut′ := ≤[c] ∩ Cut, >′ := c, area′ := area|Cut′∪{>′}, and κ′ := κ|V ′ .

Lemma 2. If G := (V,>, Cut, area, κ) is a formal graph and c ∈ Cut ∪ {>} is a
context, then G[c] is a subgraph of G.

Proof: Trivial.

The next two definitions are neccessary for defining and understanding the calculus
we will present in Sec. 8. Most of the rules in this calculus modify only parts of a
graph which are enclosed by a specific context. For some rules we have to distinguish
whether this context is enclosed by an odd or even number of cuts. For this reason
Definition 10 is needed. As we modify the graph only ‘inside’ the specific context,
the part of the graph outside of this context remains unchanged. We will say that
the starting graph and the resulting graph are isomorphic except for the context,
which is captured by Definition 11.

Definition 10 (Even and Oddly Enclosed, Pos. and Neg. Contexts).

Let G = (V,>, Cut, area, κ) be a formal Alpha graph, let x be a subgraph or let x
be an element of V ∪Cut ∪ {>}. We set n := |{c ∈ Cut |x ∈ ≤[c]}|. If n is even, x
is said to be evenly enclosed, otherwise x is said to be oddly enclosed.

The sheet of assertion > and each oddly enclosed cut is called a positive context,
and each an evenly enclosed cut is called negative context.

18

Definition 11 (Partial Isomorphism).

For i = 1, 2, let Gi := (Vi,>i, Cuti, areai, κi), be two formal Alpha graphs and let
ci ∈ Cuti ∪ {>i} be given contexts. For i = 1, 2, we set V ′

i := {v ∈ Vi | v 6≤ ci} and
Cuti

′ := {d ∈ Cuti ∪ {>i} | d 6< ci}. Then f = fV

.
∪ fCut is called isomorphism

except for c1 ∈ Cut1 ∪ {>1} and c2 ∈ Cut2 ∪ {>2} if fV : V ′
1 → V ′

2 and fCut :
Cut1

′ → Cut2
′ are bijective with fCut(>1) = >2, such that f [area(c)] = area′(f(c))

for each c ∈ Cut1 ∪ {>1}′, and κ1(v) = κ2(fV (v)) for all v ∈ V ′
1 .

A common operation on diagrams is to juxtapose them, i.e. writing them side by
side. On the side of the mathematical structure, this corresponds to the disjoint
union of a set of graphs, which is captured by the next definition.

Definition 12 (Juxtaposition of Formal Alpha Graphs).

Let Gi := (Vi,>i, Cuti, areai, κi) be graphs for i = 1, . . . , n with n ∈ N0. The
juxtaposition of the Gi is defined to be the following graph G := (V,>, Cut, area, κ):

– V :=
⋃

i=1,...,n Vi × {i} ,
– Cut :=

⋃
i=1,...,n Cuti × {i} ,

– area is defined as follows:
area((c, i)) = areai(c)× {i} for c ∈ Cuti

area(>) =
⋃

i=1,...,n areai(>i)× {i}
, and

– κ(v, i) := κi(v) for all v ∈ V E and i = 1, . . . , n.

In the graphical notation, the juxtaposition of the Gi is simply noted by writing the
graphs next to each other, i.e. we write: G1 G2 . . . Gn .

It should be noted that the juxtaposition of an empty set of graphs is allowed, too.
It yields the empty graph, i.e. (∅,>, ∅, ∅, ∅).

8 Semantics and Calculus for Formal Alpha Graphs

We start this section with providing a semantics for formal Alpha graphs. As in
propositional logic, we assign truth values to the propositional variables by valua-
tions. Propositional variables stand for propositions which are simply true or false.

Definition 13 (Valuation). A valuation is a mapping val : P → {ff, tt}.

Now we have to extend valuations to graphs by reflection of the meaning of cuts
and juxtaposition. This is done close to the so-called endoporeutic method of Peirce.

Definition 14 (Evaluations).

Let val be a valuation and let G := (V,>, Cut, area, κ) be a graph. We evaluate G
for val inductively over c ∈ Cut∪{>}. The evaluation of G in a context c is written
val |= G[c], and it is inductively defined as follows: val |= G[c] :⇐⇒

– val(κ(v)) = tt for each v ∈ V ∩ area(c) (vertex condition), and
– val 6|= G[c′] for each c′ ∈ Cut∩area(c) (cut condition: iteration over Cut∪{>})

For val |= G[>] we write val |= G and say that G is valid for val resp. val is a
model for G. If we have graphs G1, G2 such that val |= G2 for each valuation val,
we write G1 |= G2.

19

Next, the calculus for formal Alpha graphs will be provided. The rules have al-
ready been informally presented in the introduction. We have now the possibility
to describe the rules in a mathematically precise manner. Here are the appropriate
mathematical definitions:

– erasure and insertion
We first provide a general definition for inserting and erasing a subgraph.
Let G := (V,>, Cut, area, κ) be a graph which contains the subgraph G0 :=
(V0,>0, Cut0, area0, κ0). Let G′ := (V ′,>′, Cut′, area′, κ′) be defined as follows:
• V ′ := V \V0, >′ := > and Cut′ := Cut\Cut0 ,

• area′(d) :=
{

area(d) d 6= >0

area(d)\(V0 ∪ Cut0) d = >0
.

• κ′ := κ|V ′

Then we say that G′ is derived from G by erasing the subgraph G0 from the
context >0, and G is derived from G′ by inserting the graph G0 into the context
>0. The rules ‘erasure’ and ‘insertion’ are restrictions of the definition above:
Let G be a graph and let G0 be a subgraph of G with c := ctx(G0), and let G′

be obtained from G by erasing G0 from the context c. If c is positive, then G′ is
derived from G by erasing G0 from a positive context, and if c is negative, than
G′ is derived from G by inserting G0 into a negative context.

– iteration and deiteration
Let G := (V,>, Cut, area, κ) be a graph which contains the subgraph G0 :=
(V0,>0, Cut0, area0, κ0), and let c be a context with c /∈ Cut0.
Let G′ := (V ′,>′, Cut′, area′, κ′) be the following graph:
• V ′ := V ×{1} ∪ V0×{2}, >′ := > and Cut′ := Cut×{1} ∪ Cut0×{2}.
• area′ is defined as follows:

for (d, i) ∈ Cut′ and d 6= c let area′((d, i)) := area(d)×{i}, and let
area′((c, 1)) := area(c)×{1} ∪ area0(>0)×{2}.

• κ′((k, i)) := κ(k) for all (k, i) ∈ V ′

Then we say that G′ is derived from G by iterating the subgraph G0 into the
context c and G is derived from G′ by deiterating the subgraph G0 from the
context c.

– double cuts
Let G := (V,>, Cut, area, κ) be a graph and c1, c2 ∈ Cut with area(c1) = {c2}.
Let c0 := ctx(c1) (i.e., c1 ∈ area(c0)) and set G′ := (V,>, Cut′, area′, κ) with
• Cut′ := Cut\{c1, c2}

• area′(d) :=
{

area(d) for d 6= c0

area(c0) ∪ area(c2) for d = c0
.

Then we say that G′ is derived from G by erasing the double cuts c1, c2 and G
is derived from G′ by inserting the double cuts c1, c2.

Based on the calculus, we can now define the syntactical entailment relation.

Definition 15. Let Ga, Gb be two graphs. Then Gb can be derived from Ga (which
is written Ga ` Gb), if there is a finite sequence (G1,G2, . . . ,Gn) with Ga = G1

and Gb = Gn such that each Gi+1 is derived from Gi by applying one of the rules
of the calculus. The sequence is called a proof for Ga ` Gb. Two graphs G1,G2 with
G1 ` G2 and G2 ` G1 are said to be provably equivalent.

If H := {Gi | i ∈ I} is a (possibly empty) set of graphs, then a graph G can be
derived from H if there is a finite subset {G1, . . . ,Gn} ⊆ H with G1 . . .Gn ` G
(remember that G1 . . .Gn is the juxtaposition of G1, . . . ,Gn).

20

Before we start with the proof that the calculus is sound and complete, we finally
show in this section three simple metalemmata in the sense that they show some
schemata for proofs with EGs, i.e., they are derived ‘macro’-rules.

All rules in the calculus which are applied in a context only depend on whether the
context is positive or negative. In particular if a proof for Ga ` Gb is given, this
proof can be carried out in arbitrary positive contexts. This yields immediately the
following lemma, which can be found in [So97].

Lemma 3 (Cut-And-Paste-Theorem).

Let Ga ` Gb for two graphs Ga, Gb. It follows:

– If Ga is a subgraph of G in a pos. context, then Ga may be replaced by Gb.
– If Gb is a subgraph of G in a neg. context, then Gb may be replaced by Ga.

In particular we have that derivable graphs G0 (i.e., graphs with ` G0) can be
inserted into arbitrary contexts of arbitrary graphs.

From this lemma we obtain the graph version of the well known deduction theorem.

Lemma 4 (Deduction Theorem).

Let Ga, Gb be graphs. Then Ga ` Gb ⇐⇒ `
�
�

�
�

�� �Ga Gb

Proof: We show both directions separately.

‘=⇒’:
dc

`
�
�

�
�

�� �ins

`
�
�

�
�

�� �Ga

it

`
�
�

�
�

�� �Ga Ga

L. 3

`
�
�

�
�

�� �Ga Gb

‘⇐=’: Ga

L. 3

` Ga

�
�

�
�

�� �Ga Gb

deit

` Ga

�
�

�
�

�� �Gb

dc

` Ga Gb

era

` Gb 2

The following lemma is quite obvious:

Lemma 5. Let G, Ga, Gb be graphs with G ` Ga and G ` Gb. Then G ` Ga Gb.

Proof: G
it

` G G
L. 3

` Ga G
L. 3

` Ga Gb 2

9 Soundness and Completeness

In this chapter we will show that the rules we presented in Sec. 8 are sound and
complete with respect to the given semantics. In the first section, we will prove the
soundness of the calculus, in the next section we will prove its completeness.

9.1 Soundness

Most of the rules modify only the area of one specific context c (for example, the
rule ‘erasure’ removes a subgraph from the area of a positive context). If a graph
G′ is derived from a graph G by applying one of these rules (i.e., by modifying a
context c in the graph G), G and G′ are isomorphic except for c. As it has to be
shown that no rule can transform a valid graph into a nonvalid one, the following
theorem is the basis for proving the soundness of most rules.

21

Theorem 1 (Main Lemma for Soundness).

Let G := (V,>, Cut, area, κ) and G′ := (V ′,>′, Cut′, area′, κ′) be graphs and let
f = fV

.
∪ fCut be an isomorphism from G to G′ except for c ∈ Cut ∪ {>} and

c′ ∈ Cut′ ∪ {>′}. Let val : P 7→ {ff, tt} be a valuation. Let P (d) be the following
property for Cuts d ∈ Cut ∪ {>}:

– If d is positive and val |= G[d], then val |= G′[f(d)], and
– If d is negative and val 6|= G[d], then val 6|= G′[f(d)].

If P holds for c, then P holds for each d ∈ Cut ∪ {>} with d 6< c. In particular
v |= G′ follows from v |= G.

Proof: We set D := {d ∈ Cut ∪ {>} | d 6< c}. D is a tree such that for each d ∈ D
with d 6= c and each e ∈ Cut ∪ {>} with e < d we have e ∈ D. For this reason
we can carry out the proof by induction over D. As c satisfies P , it is sufficient to
carry out the induction step for d 6= c. So let d ∈ D, d 6= c be a context such that
P (e) holds for all cuts e ∈ area(d) ∩ Cut.

First Case: d is positive and val |= G[d].

We have to check the vertex- and cut-conditions for f(d). We start with the vertex
conditions for f(d), i.e., for vertices v′ ∈ V ′ with ctx′(v′) = f(d).

For each v ∈ V with ctx(v) = d, it holds κ(v) = κ′(f(v)), hence

val(κ(v)) = tt⇐⇒ val(κ′(f(v))) = tt.

As fV is a bijection from area(d) ∩ V to area′(f(d)) ∩ V ′, we gain the following:
All vertex conditions in d hold iff all vertex conditions in f(d) hold.

As we have val |= G[d], we get that val 6|= G[e] for all cuts e ∈ area(d). These
cuts are negative and are mapped bijectively to the cuts e′ ∈ area(f(d)). As they
are negative, we conclude from the induction hypothesis or the presupposition (for
e = c) that val 6|= G′[f(e)] for all cuts e ∈ area(d), i.e., val 6|= G′[e′] for all cuts
e′ ∈ area′(f(d)).

As we have checked all vertex- and cut-conditions for f(d), we get val |= G′[f(d)].

Second Case: d is negative and val 6|= G[d].

This is shown analogously to the first case. 2

With this lemma, we can prove the correctness of the rules. Due to space limitations,
the prove will only be carried out for the rules ‘iteration’ and ‘deiteration’. The other
rules can be handled similarly.

Lemma 6 (Iteration and Deiteration are Sound).

If G and G′ are graphs, val is a valuation with val |= G and G′ is derived from G
by applying one of the rules ‘iteration’ or ‘deiteration’, then val |= G′.

Proof: Let G0 := (V0,>0, Cut0, area0, κ0) be the subgraph of G which is iterated
into the context c ≤ ctx(G0), c /∈ Cut0. We use the mathematical notation which
was given in Sec. 8. In particular, (c, 1) is the context in G′ which corresponds to
the context c in G. There are two cases to consider:

First Case: val |= G0. From this we conclude val |= G[c] ⇐⇒ val |= G′[(c, 1)]. As
G and G′ are isomorphic except for c ∈ Cut∪{>} and (c, 1) ∈ Cut′ ∪{>′}, Lem. 1
can be applied now. This yields

val |= G ⇐⇒ val |= G′ . (∗)

22

Second Case: val 6|= G0. This yields val 6|= G[>0] and val 6|= G′[(>0, 1)]. As G and
G′ are isomorphic except for >0 ∈ Cut ∪ {>} and (>0, 1) ∈ Cut′ ∪ {>′}, Lemma 1
can be applied now. This yields again (∗).
The direction ‘=⇒’ of (∗) yields the correctness of the iteration-rule. The opposite
direction ‘⇐=’ of (∗) yields the correctness of the deiteration-rule. 2

Lemma 7 (Erasure and Insertion are Sound).

If G and G′ are graphs, v is a valuation with val |= G and G′ is derived from G by
applying one of the rules ‘erasure’ or ‘insertion’, then val |= G′.

Lemma 8 (Double Cut is Sound).

If G and G′ are graphs, val is a valuation with val |= G and G′ is derived from G
by applying the rule ‘double cut’, then val |= G′.

From the preceding lemmata the soundness of the calculus follows immediately:

Theorem 2 (Soundness of the Alpha-Calculus).

Two formal Alpha graphs G, G′ satisfy G ` G′ =⇒ G |= G′.

9.2 Completeness

As the empty sheet of assertion is always true, the graph
�� ��is always false. This

leads to the following definition and lemmata.

Definition 16. A set H of graphs is called consistent if H ` �� ��does not hold. A
graph G is called consistent if {G} is consistent.

Lemma 9. A set H of graphs is not consistent if and only if H ` G′ for each graph
G′.

Proof: Only the direction ‘=⇒’ has to be proven. So let G1, . . . ,Gn ∈ H with
G1 . . .Gn `

�� ��. Let G be the juxtaposition of G1, . . . ,Gn. We conclude:

G ` �� ��T. 4⇐⇒ `
�� ������

�
�
�G dc⇐⇒ `

�
 �	G
ins=⇒ `

�
�

�
��
 �	G G′ T. 4⇐⇒ G ` G′ Def. `⇐⇒ H ` G′ 2

Lemma 10. Let G be a graph and let H be a set of graphs. Then we have

H ` G ⇐⇒ H ∪ { G
�
 �	} ` �� �� and H ` G

�
 �	⇐⇒ H ∪ {G} ` �� �� .

Proof of the first equivalence (the second is shown analogously):

H ` G
Def. `⇐⇒ there are G1, . . . ,Gn ∈ H with G1 . . .Gn ` G

T. 4⇐⇒ there are G1, . . . ,Gn ∈ H with `

�
�

�
�

�� �G1 . . .Gn G

dc⇐⇒ there are G1, . . . ,Gn ∈ H with `

�
�

�
�

�� ��
�

�
��� ��G1 . . .Gn G

T. 4⇐⇒ there are G1, . . . ,Gn ∈ H with G1 . . .Gn G
�� �̀�� ��

Def. `⇐⇒ H ∪ { G
�� �} ` �� �� 2

23

Consistent sets of graphs can be extended to maximal (with respect to ⊆) consistent
sets graphs, which have canonically given valuations satisfying them. This will be
elaborated with the next lemmata.

Lemma 11. Let H be a maximal consistent set of graphs. Then:

1. Either H ` G or H ` G
�
 �	 for each graph G.

2. H ` G ⇐⇒ G ∈ H for each graph G.
3. G1 G2 ∈ H ⇐⇒ G1 ∈ H and G2 ∈ H for all graphs G1,G2.

Proof: It is easy to see that G G
�
 �	̀�� ��. Hence if H is consistent, H ` G and

H ` G
�
 �	 cannot hold both. Now we can prove all propositions of this lemma:

1. Assume H 6` G for a graph G. Lem. 10 yields that H ∪ { G
�
 �	} is consistent.

As H is maximal, we conclude that G
�
 �	∈ H, hence we have H ` G

�
 �	.
2. Let H ` G. As H is consistent, we get that H 6` G

�
 �	. So Lem. 10 yields that
H ∪ {G} is consistent. As H is maximal, we conclude G ∈ H.

3. Follows immediately from 1. and 2. 2

Lemma 12. Let H be a consistent set of graphs. Then there is a maximal set H′ of
graphs with H′ ⊇ H.

Proof: Let G1,G2,G3, . . . be an enumeration of all graphs.We define inductively a
set of graphs Hi for each i ∈ N. We start with setting H1 := H. Assume now that
Hi ⊇ H is defined and consistent.

If Hi ` Gi

�
 �	does not hold, then Hi+1 := Hi ∪{Gi} is consistent due to Lem. 10.

Otherwise, if Hi ` Gi

�
 �	holds, then Hi+1 := Hi ∪ { Gi

�
 �	} is consistent.

Now H′ :=
⋃

n∈N H′n is obviously a consistent maximal graph set with H′ ⊇ H. 2

Theorem 3. Let H be a maximal consistent set of graphs. Then there exists a
canonically given valuation val such that val |= G for each graph G ∈ H.

Proof: Let us first define a graph which states the propositional variable Pi. We set
G(Pi) := ({v},>, ∅, ∅, {(v, Pi)}) with an arbitrary vertex v . Let val : P 7→ {ff, tt}
be defined as follows: val(Pi) := tt : ⇐⇒ H ` G(Pi).

Now let G′ := (V,>, Cut, area, κ) be a formal Alpha graph. We show

val |= G′[c] ⇐⇒ H ` G′[c] (10)

for each c ∈ Cut ∪ {>}. The proof is done by induction over Cut ∪ {>}. So let
c ∈ Cut ∪ {>} be a cut such that (10) holds for each d < c. We have:

val |= G′[c] Def. evaluation⇐⇒ val(κ(v)) = tt for each v ∈ V ∩ area(c)
and val 6|= G[d] for each d ∈ Cut ∩ area(d)

Def. val and Ind.Hyp.⇐⇒ H ` G(κ(v)) for each v ∈ V ∩ area(c)
and H 6` G′[d] for each d ∈ Cut ∩ area(d)

L. 11⇐⇒ G(κ(v)) ∈ H for each v ∈ V ∩ area(c)

and G′[d]
�� �∈ H for each d ∈ Cut ∩ area(d)

L. 11⇐⇒ G[c] ∈ H

As we have G = G[>], applying (10) to c := > yields val |= G′ ⇐⇒ H ` G′. 2

Now we are prepared to prove the completeness of the calculus.

24

Theorem 4 (Completeness of the Calculus).

Two formal Alpha graphs G1, G2 satisfy G1 |= G2 =⇒ G1 ` G2.

Proof: Assume that G1 ` G2 does not hold. Then Cor. 10 yields that G1 G2

�� �
is consistent. According to the last lemma, let be H be a maximal consistent set
of graphs which includes this graph. Due to Thm. 3, H has a canonically given

valuation val. This valuation is in particular a model for G1 G2

�� �. So v is a
model for G1, but not for G2, which is a contradiction to the assumption. 2

References

[Ba93] John Barwise: Heterogenous reasoning, in G. W. Mineau, B. Moulin, J. F. Sowa
(Eds.): Conceptual Graphs for Knowledge Representation. LNAI 699, Springer
Verlag, Berlin–New York 2000, 64–74.

[Bu91] R. W. Burch: A Peircean Reduction Theses: The Foundations of Topological Logic.
Texas Tech University Press, 1991.

[Da00] F. Dau: Negations in Simple Concept Graphs, in: B. Ganter, G. W. Mineau (Eds.):
Conceptual Structures: Logical, Linguistic, and Computational Issues. LNAI 1867,
Springer Verlag, Berlin–New York 2000, 263–276.

[Da01] F. Dau: Concept Graphs and Predicate Logic, in: H. S. Delugach, G. Stumme
(Eds.): Conceptual Structures: Broadening the Base. LNAI 2120, Springer Verlag,
Berlin–New York 2001, 72–86.

[Da02] F. Dau: An Embedding of Existential Graphs into Concept Graphs with Negations.
In: D. Corbett, U: Priss (Eds.): Conceptual Structures: Integration and Interfaces,
LNAI, Springer Verlag, Berlin–Heidelberg 2002.

[Da03] F. Dau: The Logic System of Concept Graphs with Negation (And Its Relationship
to Predicate Logic). LNAI, Vol. 2892, Springer, Berlin–Heidelberg–New York, 2003.

[Ha95] E. M. Hammer, Logic and Visual Information. CSLI Publications, Stanford, Cal-
ifornia, 1995.

[Ha98] E. M. Hammer, Semantics for Existential Graphs. Journal Philosohpical Logic,
Vol. 27, 1998, 489–503.

[HS02] J. Howse, F. Molina, S. Shin, J. Taylor: On Diagram Tokens and Types
[Pe98] C. S. Peirce: Reasoning and the Logic of Things. The Cambridge Conferences

Lectures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cambridge 1992.
[PS09] C. S. Peirce, J. F. Sowa: Existential Graphs: MS 514 by Charles Sanders Peirce

with commentary by John F. Sowa
http://users.bestweb.net/∼sowa/peirce/ms514.htm

[Pe03] C. S. Peirce: Existential graphs. 1903. Partly published in the collected papers of
Peirce. Complete german translation in:
Helmut Pape: Charles Sanders Peirce: Phänomen und Logik der Zeichen.
Suhrkamp Taschenbuch Wissenschaft, 1983.

[Ro73] D. D. Roberts: The Existential Graphs of Charles S. Peirce. Mouton, The Hague,
Paris, 1973.

[Ro92] D. D. Roberts: The Existential Graphs. Computers Math. Applic., Vol. 23, No.
6–9, 1992, 639–63.

[Sh94] S. Shin: The Logical Status of Diagrams. Cambridge University Press, 1994.
[Sh99] S. Shin: Reconstituting Beta Graphs into an Efficacious System. Journal of Logic,

Language and Information, Vol. 8, No. 3, July 1999.
[Sh01] S. Shin: The Iconic Logic of Peirce’s Graphs. Bradford Book, Massachusetts, 2002.
[So84] J. F. Sowa: Conceptual Structures: Information Processing in Mind and Machine.

The System Programming Series. Adison-Wesley, Reading 1984.
[So92] J. F. Sowa: Conceptual Graphs Summary, in: T. E. Nagle, J. A. Nagle, L. L. Ger-

holz, P. W. Eklund (Eds.): Conceptual Structures: current research and practice,
Ellis Horwood, 1992, 3–51.

[So97] J. F. Sowa: Logic: Graphical and Algebraic, Manuskript, Croton-on-Hudson 1997.

25

