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Abstract. In the ICCS 2000 proceedings we introduced negation to
simple concept graphs without generic markers by adding cuts to their
definition. The aim of this paper is to extend this approach of cuts to
simple concept graphs with generic markers. For these graphs, a set-
theoretical semantics is presented. After this a modification of Peirce’s
beta-calculus is provided, and definitions for mappings ¢ and ¥ between
concept graps and first order logic are given. If we consider both concept
graphs and first order logic formulas, together with their particular deriv-
ability relations, as quasiorders, ¢ and ¥ are mutually inverse quasiorder
isomorphisms between them. The meaning of this fact is elaborated. Fi-
nally we provide a result that links the semantics of concept graphs and
the semantics of first order logic. This result can be used to show that
the calculus for concept graphs is sound and complete.

1 Motivation and Overview

In | |, we introduced negation to simple concept graphs without generic
markers by adding cuts to their definition. These concept graphs are closely
related to the a-part of the existential graphs of Charles Sanders Peirce, which
consist only of cuts and propositional variables. The aim of this work is to
extend the approach of | | to simple concept graphs with generic markers.
These graphs correspond to the S-part of existential graphs, namely to existential
graphs which are built up of cuts, relation names, and lines of identity. It is
accepted that these graphs are equivalent to first order logic. An argumentation
to support this (but, in our view, not a strict mathematical proof) can be found
in | |. Therefore it seems to be evident that a class of simple concept graphs
with generic markers and negations (i.e. cuts) are equivalent to first order logic,
too. Indeed, this equivalence can be described and proven in a mathematically
precise way, which will be in | ]. In this paper, we want to elaborate some
aspects of this work.

To start, we provide the necessary definitions for concept graphs with cuts.
A mathematical semantics for these graphs which is based on power context
families is presented. After this sematical part, we provide a calculus which is
based on the g-calculus for existential graphs, but which captures the specific
properties of concept graphs. A mathematical definition for the version of the
well-known $-operator which maps (in this case) simple concept graphs with cuts
to first order logic is given, as well as the definition for a mapping ¥ in the inverse



direction. It turns out that ¢ and ¥ are mutually inverse isomorphismns between
the quasiordered sets of concept graphs and first order logic. The proof for this
is very extensive (and will be given in | ). In this paper, we investigate
only the meaning of these isomorphismns. Finally, we give a result that links
the semantics for concept graphs to the usual relational semantics for first order
logic. This result can be used to show that the calculus for concept graphs is
sound and complete.

2 Basic Definitions for Simple Concept Graphs

First, we start with an underlying set of variables and names which are needed
in concept graphs as well as in first order logic.

Definition 1.

1. Let Var be a countably infinite set. The elements of Var are called variables.
In concept graphs, we need a sign *, the generic marker. Further we assign
a new sign x4 to each variable a € Var.
2. An alphabet is a triple A:= (G,C,R) such that
— G is a finite set whose elements are called object names.
— (C,<c¢) is a finite ordered set with a greatest element T. The elements
of this set are called concept names.
— (R,<R) is a familiy of finite ordered sets (Ri,<wr,), k =1,...,n (for
an n € N with n > 1) whose elements are called relation names. Let
id € Rz be a special name which is called identity.

Now we can define the underlying structures of concept graphs with cuts.
There are two slight changes compared to Definition 2 in | |: First, for purely
technical reasons, we add the sheet of assertion to the definition. Second, we
change the definition of the mapping area so that the area of a cut ¢ contains
vertices, edges, and other cuts which are enclosed by ¢, but not if they are nested
deeper inside other cuts. The only reason for this is that this definition reflects
the meaning of area in existential graphs better than the definition in | .

Definition 2. A relational graph with cuts is a structure (V, E,v, T, Cut, area)
such that

V, E and Cut are pairwise disjoint, finite sets whose elements are called

vertices, edges and cuts, respectively,

v:E—= P, V¥ (for an € Nyn > 1) is a mapping,

T is a single element, the sheet of assertion, and

area : CutU{T} = P(V UE U Cut) is a mapping such that

a) c1 # c2 = area(c1) Narea(ca) =0,

b) VUEUCut = Upecuugry areak),

¢) ¢ ¢ area™(c) for each ¢ € Cut and n € N (with area®(c) := {c} and
area™1(c) := area™(c) U {area(c') | ¢' € area™(c)}).



For an edge e € E with v(e) = (v1,...,v;) we define |e| :=k and I/(e)|z. = ;.
For eachv eV, let E, :={e € E | Ji: y(e)|i = v}. Analogously, for each e € E,
let Ve :={v eV |3i I/(e)|l. = v}. If it cannot be misunderstood, we write e|i
instead of v(e)|,.

The empty graph has the form &y := (0,0,0, T,0,0).

We say that all edges, vertices and cuts in the area of ¢ and all items which
are deeper nested are enclosed by c:

Definition 3. For a relational graph with cuts (V, E,v, T,Cut,area) we define
area : Cut U{T} = P(V UEUCut), area(c) := U,y area™(c). Bvery element
k of area(c) is said to be enclosed by ¢, and vice versa: ¢ is said to enclose k. For
every element of area(c), we say more specificly that it is directly enclosed by c.
Because every k € VU E U Cut is directly enclosed by exact one ¢ € Cut U {T},
for every k € area(c) we can write ¢ = area™'(k), or even more simply and
suggestive: ¢ = cut(k).

By ¢1 < ¢2 :<=> ¢; € area(cz) a canonical tree ordering on Cut U {T} with
T as greatest element is defined.

In this work, we will only consider graphs in which vertices must not be
deeper nested than any edge they are incident with. This is captured by the
following definition:

Definition 4. If cut(e) < cut(v) holds for every e € E and v € V such that e
is incident with v, then ® is said to have dominating nodes.

Now simple concept graphs with cuts are derived from relational graphs
with cuts by additionally labeling the vertices and edges with concept names
and relation names, respectively, and by assigning a reference to each vertex.

Definition 5. A simple concept graph with cuts and variables over the alphabet
A is a structure & := (V, E,v, T, Cut,area, k, p) where

— (V,E,v, T,Cut,area) is a relational graph with cuts

—k:VUE = CUR is a mapping such that k(V) C C, k(E) C R, and all
e € E with v(e) = (v1,...,vx) satisfy k(e) € Ry

— p: V> GU{x}U{x,|a € Var} is a mapping.

If additionally p : V — GU{x} holds, then & is called simple concept graph with
cuts over the alphabet A. If even p : V. — G holds, then & is called nonexistential
simple concept graph with cuts over the alphabet A. For the set E of edges, let
Eiq :={e € E|k(e) = id} and Enonia := {e € E| k(e) # id}. The elements of
E;q are called identity-links.

In the rest of this work, we will mainly talk about (existential) simple concept
graphs with cuts and dominating nodes over the alphabet A, and will call them
‘concept graphs’ for short. This set of concept graphs is denoted by CG.



The mathematical definitions make up an exact and solid foundation for
concept graphs which can serve as a precise reference and a basis for mathemat-
ical proofs on concept graphs. But in order to work with concept graphs, their
mathematical representations are too clumsy and too difficult to handle. Hence
one may prefer the well known graphical representations of conceptual graphs.
Because we added cuts as new syntactical elements to the graphs, we have to
explain how concept graphs with cuts are drawn. This shall be done now.

Vertices are usually drawn as small rectangles. Inside the rectangle for a
vertex v, we write first the concept name k(v) and then the reference p(v),
seperated by a colon. These rectangels are called concept bores. An edge e is
drawn as a small oval with its relation name x(e) in it. The name ’id’ for the

identity is often replaced by the symbol *=’". These ovals are called relation ovals.
For an edge e = (vy, - - -,v,), each concept box of the incident vertices vy, ..., v,
is connected by a line to the relation oval of e. These lines are numbered 1, ..., n.

If it cannot be misunderstood, this numbering is often omitted. There may be
graphs such that its lines cannot be drawn without their crossing one another.
To distinguish such lines from each other, Peirce introduced a device he called
a ’bridge’ (see | |, Page 55). But, except for bridges between lines, all the
boxes, ovals, and lines of a graph must not intersect. Nearly all graphs which
occur in applications do not need bridges. Finally, a cut is drawn as a bold
curve (usually an oval) which exactly contains in its inner space all the concept
boxes, ovals, and curves of the vertices, edges, and other cuts, resp., which the
cut encloses (not necessarily directly). The curve of a cut may not intersect any
other curves, ovals or concept boxes, but it may intersect lines which connect
relation ovals and concept boxes (this is usually inevitable).

To illustrate these agreements, consider the following graph over the alphabet
A= (0, {CAT, ANIMAL, T} ,{cute, id}) in its mathematical form:

& := ({v1,v2}, {e1, e}, {(e1, (v1,v2)), (€2,v2)}, T, {c1,ca},

{(Ta @)7 (Cla {Ul}); (02; {U2; €1, 62})}5
{(v1, CAT), (v2, ANIMAL), (e1,id), (e2, cute) }, {(v1, %), (v2,%)})

In Figure ll we give one (possible) diagram for this graph. The indices vy, va, €1,
ea, €1, c2 do not belong to the diagram. They are added to make the translation
from & to the diagram more transparent. Now one can see that the intuitive
meaning of the graph is ’it is not true that there is a cat which is not a cute
animal’; i.e. ’every cat is a cute animal’. This will be worked out in Section [l

(CAT:s| "= flANIMAL: ;cuteez]]
1 1 2
73
Cy

Fig. 1. one example for a simple concept graph with cuts and dominating nodes



For our further work, especially for the calculus, the notion of a subgraph
is needed. We distinguish beween subgraphs and closed subgraphs. Informally
spoken, a subgraph is a part of a graph such that

— if the subgraph contains a cut ¢, then it contains whatever is scribed inside
¢, i.e. area(c), and

— if the subgraph contains an edge, then it contains all vertices which are
incident with the edge.

If it holds furthermore that for each vertex of subgraph all incident edges are
part of the subgraph, too, then the subgraph is called a closed subgraph. Instead
giving a formal definition for this (which will be in | ]), we only provide some
examples.

The marked area in the left example is no subgraph. The marked area in the
middle example is a subgraph which is not closed. The marked area in the right
example is a closed subgraph in the outermost cut.

We use the following teminology: For each vertex, edge, cut, or subgraph,
we say that it is evenly enclosed iff the number of cuts which enclose it is even,
otherwise it is oddly enclosed. Evenly enclosed cuts are also called positive cuts,
and oddly enclosed cuts are called negative cuts. The formal definitions can be
found in | .

3 Semantics for Simple Concept Graphs

As in the papers of Prediger (cf. | ], [ ]) or asin | ], we use power
context families as model structures for concept graphs. Their definition can be
found in | 1, [ ] orin | ]. But we want to repeat the definition of
a K—interpretation which we presented in | ], because the identity-relation
ide R, caused a slight change to Prediger’s definition of a ]K—interpretation.

Definition 6. For an alphabet A := (G,C,R) and a power context family ]K, we
call the union X := Ag U e UM of the mappings Ag: G — Go, Ac:C — B(Ky)
and Ap: R — Ri a ]I_{—interpretation of A if A¢ and Ar are order-preserving,
Ae(T) =T, M (Re) CB(Ky) forallk =1,...,n, and (g1, 92) € Ext(\r(id)) <
g1 = g2 hold for all 91,92 € G. The pair (K, A) is called context-interpretation
of A or, according to classical logic, A-structure.

Now we can define whether a concept graph is valid in an A-structure. To
do this, we read and evaluate the graph from the outside. Hence we start with
the sheet of assertion T, and proceed with the inner cuts. This method (reading



a graph from the outside and proceeding inwardly) was called ’endoporeutic
method’ by Peirce (see | ]). Before we give a precise definition, we exemplify
this method on the graph & from Figure il

We start the evaluation of this graph on the sheet of assertion T. Because
only the cut ¢; is directly enclosed by T, the graph & is true if the part of &
which is enclosed by c; is false. Because ¢; contains the vertex v; and the cut co,
we come to the following conclusion: & is true iff it is not true that the following
two conditions hold: There exists an object such that oy is a cat (lets call it 01)
and the information which is enclosed by ¢, is false. Now we have to evaluate
the area of ¢y. Intuitively spoken, the area of ¢, is true iff there is an object that
is a cute animal and identical to 0,. Note that during this evaluation, we refer
to the object o;. That is why the endoporeutic method goes from the outside to
the inside: We cannot evaluate the inner cut co unless we know which object is
assigned to the generic marker in the vertex v;. Finally & is true if there is no
cat such that there is no other object which is identical to the cat (hence the cat
itself) and which is a cute animal. In simpler words: & is true if there is no cat
which is not a cute animal, i.e. if every cat is a cute animal.

Hopefully this example helps the reader to understand the following defini-
tions. The assignment of objects to vertices by valuations:

Definition 7. Let(]K, A) be a context-interpretation of the alphabet A and & =
(V,E,v, T,Cut,area, k,p) be a graph. A partial valuation of & is a mapping
ref : V' CV — Ko such that V! D {v € V|p(v) € G} =: Vg and ref(v) =
Ag(p(v)) holds for allv € Vg. If V! =V holds, thenref is called (total) valuation
of &.

With the endoporeutic method, we can evaluate the area of a cut ¢ in a
concept graph & if we already have a partial valuation ref which assigns objects
to the vertices which are placed outside of ¢. This is written down (K,)) =
&[c,ref] and defined as follows:

Definition 8. Let (K, A) be a context-interpretation of an alphabet A and let
& := (V,E,v, T,Cut,area, K, p) be a concept graph. Inductively on the tree CutU
{T}, we define (K, ) = &[c,ref] for every cut ¢ € Cut U{T} and every partial
valuation ref : V' — Ko with V' D J{area(d)|d € Cut U {T},d > ¢} and
V' Nnarea(c) = 0:
(K, ) £ 8[c,ref] =
ref can be extended to a partial valuation ref : V' U (V Narea(c)) - Ko (i-e.
ﬁ_f(v) =ref(v) for all v € V') such that the following conditions hold:

- rej(v) € Ext(Ac(k(v))) for each v € V Narea(c) (vertex condition)
— ref(e) € Ext(Agr(k(e))) for each e € ENarea(c) (edge condition)
- (K, ) e &[c,ref] for each ¢ € Cut Narea(c) (iteration over Cut U {T})

For (]K, A) E 8[T,0] we write (]K, A) |E 6. If we have two concept graphs
&1, B2 such that (K, \) | &2 for each A-structure with (K, \) | &1, we write
61 |: @2.



Note that this definition (in particular the edge condition) relies on the con-
dition that we consider concept graphs with dominating nodes only.
Now we are prepared to present the calculus for concept graphs.

4 The Calculus for Simple Concept Graphs with Cuts

The following calculus is based on the f-calculus of Peirce for existential graphs
with lines of identity. More precisely: The first five rules of the calculus are
a concept graph version of Peirce’s S-calculus. The rules ’generalization’ and
‘specialization’ encompass the orders on the concept- and relation names. The
rules 'T- and id-Insertion’ and 'T- and id-Erasure’ are needed to comprehend
the specific properties of the concept name T and the relation name ¢d. For the
sake of intelligibility, the whole calculus is described using common language.
An appropriate mathematical definition as in | ] will be given in | ].

Definition 9. The calculus for simple concept graphs with cuts over the alphabet
A consists of the following rules:

— erasure
In positive cuts any directly enclosed edge, isolated vertex and closed subgraph
may be erased.

— insertion
In negative cuts any directly enclosed edge, isolated vertex and closed sub-
graph may be inserted.

— iteration
Let &g be a subgraph of & and let ¢ < cut(®&g) be a cut that does not belong
to &y. Then a copy of &g may be inserted into ¢. For every verter v with
cut(v) = cut(Bg), an identity-link from v to its copy may be inserted.

— deiteration
If & is a subgraph of & which could have been inserted by rule of iteration,
then it may be erased.

— double cuts
Double cuts (two cuts c1,c2 with cut (c2) = {c1}) may be inserted or erased.

— generalization (unrestriction)
For evenly enclosed vertices and edges, their concept names or object names
resp. their relation names may be generalized.

— specialization (restriction)
For oddly enclosed vertices and edges, their concept names or object names
resp. their relation names may be specialized.

— isomorphism
A graph may be substituted by an isomorphic copy of itself.

— T- and id-Insertion
1. T-rule

For g € GU {x}, an isolated vertex may be inserted in arbitrary
cuts.



2. identity

Let g € G, let , be two vertices in cuts c1, ca, resp., and

let ¢ < cq,c2 be a cut. Then an identity-link between ‘ P g‘ and ‘ Py g‘

may be inserted in c.
3. splitting a vertex
Let g € GU {}. Let v : be a vertex in cut co and incident with

relation edges Ry, ..., R,, placed in cuts c1,...,cy, Tesp.. Let ¢ be a cut
such that ¢1,...,¢cn < ¢ < ¢cg. Then the following may be done: In c,
a new vertex v' zm and a new identity-link between v and v' is
inserted. On Ry, ..., R,, arbitrary instances of v are substituted by v'.

4. congruence
Let g € G and let v = be a vertex in cut c. Then the following may

be done: In ¢, a new vertex v' : and a new identity link between
v and v' is inserted. On every edge, every instance of v is substituted by
v

— T- and id-Erasure

The T- and id-Insertion-rule may be reversed.

Example 1. Here is an example for the iteration-rule. Note that for one of the
two possible vertices an identity link is inserted to its copy.

,,,,,,,,,,,,,,,, (TH® T H® )

Exliic \.y

T

C T

Below please find two examples for the T- and id-Insertion rule 2 (splitting

a vertex).
== l Fo [P eﬁ)m

'1 .2

Here is an example for the T- and id-Insertion rule 4 (congruence).

- [T¥oyo-(SHCAT HonHMAT]

A very common operation for concept graphs is the juztaposition. We ommit
the mathematical definition here and describe only its graphical notation. The
juxtaposition of a given set {®;|1 < ¢ < n} of graphs is simply writing them
side by side: 8; &5 ... &,,. The juxtaposition of a empty set of graphs is the
empty graph. The juxtaposition is needed to define the syntactical entailment
relation:

l_




Definition 10. Let &,, &; be two nonezistential concept graphs. Then ; can
be derived from &, (which is written &, F &) if there is a finite sequence
(61,82,...,8,) with & = &, and G, = &, such that each &;;1 is derived
from &; by applying one of the rules of the calculus. The sequence is called a
proof for &, - &;).

If {&;|i € I} is a (possibly empty) set of nonexistential concept graphs,
then a graph & can be derived from {®;|i € I} if there is a finite subset
{&1,...,6,} C{&;|ie I} with &;...6, - 6.

5 The Syntactical Equivalence Between CG and FOL

Another way to understand concept graphs if to translate them to formulas
of first order logic. Mappings which translate conceptual graphs to formulas of
predicate logic (first or higher order) are usually denoted by &. In this work, we
give a mathematical definition for an operator ¢ which translates concept graphs
to formulas of first order logic with equality and with relation names (i.e. the
concept and relation names of A) but without function names. The set of these
formulas over A is denoted by FOL* or, even simpler, by FOL. For a formula
f, the set Free(f) of the free variables in f is defined as usual.

To define the mapping ¢ : CG — FOL, let & := (V, E,v, T, Cut, area, &, p)
be a simple concept graph with cuts, variables, and dominating nodes over the
alphabet (G,C,R). First we define Free(®) := {a € Var|there is a v with p(v) =
*q }. Then we assign a new variable a, ¢ Free(®) to each vertex v € V with
p(v) = * so that we can now define the following mapping &; on V:

a, for p(v) = *
®i(v) := ¢ afor p(v) = %, and a € Var
afor plv)=aforaeg

Finally we can define the mapping ¢ : CG — FOL inductively on the tree
CutU{T}. So let ¢ € CutU{T} be an arbitrary cut. First we define a formula f
which encodes all edges and vertices which are directly enclosed by c. If ¢ does
not directly enclose any edges or vertices, simply set f := (3z.z = x). Otherwise
let f be the conjunction of the atomic formulae

k(w) (P (w)) with w € V N area(c),

& (w1) =P (ws) with k € E;qg Narea(c) und v(k) = (wy,ws), and
k(e)(Pe(w1), ..., Pt(w;)) with e € Enonia N area(c) and v(e) = (w1, ..., w;).

(The signs which have to be understood literally are underlined. For example, the
first formula is the sequence of signs which consists of the result of the evaluation of
k(w), a left bracket, the result of the evaluation of #;(w) and a right bracket.)

Let vq,...,v, be the vertices & wich are enclosed by ¢ and which fulfill
p(v;) = %, and let area(c)NCut = {cy,...,¢} (by induction we already assigned
formulas to these cuts). If 1=0, set ¥(c) := Jay, ...Ja,, .f , otherwise set

&(c) := daw, ... Jay, (fA=P(c1)A .. . A=D(c))



and the definition of ¢ : CG — FOL is finished.

Now we want to give a definition for a mapping ¥ : FOL — CG in the
opposite direction. The formulas of FOL are built up inductively, hence the
definition of ¥ is done inductively too. To start we set the images of the terms
of FOL by a mapping ¥;: We set ¥;(C) = C for concept names C € C and
U, (a) = *, for variables a € Var. Now we can define ¥ inductively on the
composition of formulas (but we only give graphical descriptions, because the
mathematical definition of ¥ is rather technical and therefore omitted here).

— g = ¢(t) for a term ¢ and a concept name C € C: ¥ (C(t)) = |C: ()
— R(t1,...,t,) for a n-ary relation name R and terms t1, ..., t,:

2 ... n1l
U(R(t1,...,tn)) = ‘T:wt(tl)}% R QT:Wt(tn)‘

— t1 = to for two terms ty, to:

Uty =ty) = ‘T : Wt(h)}—l( = HT : Wt(b)‘
— fi1 A fa for two formulas f1 and for  U(fi A f2) = P(f1) P(f2)
(i.e. the juxtaposition of ¥(f;) and ¥ (f2)).

— —f for a formula f: U(-f) =

— Ja(f) for a formula f and a variable a:
If o ¢ Free(f), let ¥(3af) = ¥(f)
For a € Free(f), the following steps have to be taken:

1. A concept box v :: is drawn besides ¥(f): U(f)
2. On every edge every instance of a concept box is substituted by

the new concept box v (note that the concept boxes which are incident
with an edge can only bear the concept name T).

3. Every (isolated) concept box is substituted by a concept box
, which is linked to the new concept box v with an identity link:

G
4. All concept boxes are erased.

Note that ¥ translates formulas without free variables to simple concept
graphs with negations and dominating nodes.

To illustrate the procedures in ¢ and ¥, we give a little example. A well-
known example for translating first order logic to existential graphs is the formula
which expresses that a binary relation F is a (total) function. This formula is
written down only by using the F-quantor and the junctors A and —. Please see
below:

=3y (xFy A —Fz(xFz A=y = 2)))

The translations of this formula into a concept graph (by &) and into an
existential graph are shown in Figure ll Note the structural similarities of these



Fig. 2. the concept graph ¥(f) and the appropriate existential graph for f

two different kinds of graphs. Now the concept graph in Figure Ml can be trans-
lated back to a first order logic formula by the mapping ¢. One possible result
(depending on the chosen variables and to the order of the subformulas) is:

SW(f) = -Fx(T(x) A—Fy.(TW) AzFy A—-A.2(T(z) NzFz A ~(Ay = 2))))

If we erase all subformulas T(...) of this formula, we get f again. In partic-
ular, we have f F &(¥(f)) and #(¥(f)) F f (see Theorem H).

Assume that we have a sound and complete calculus F on FOL. To encompass
the orders on the concept- and relation names and the specific properties of the
concept name T, we add the following axioms to the calculus:

— Vz.T(z)
— Vz.(C1(z) — Ca(x)) for two concept names C1,Cs € C with Cy <¢ C»
— Vz1...Von.(Ri(z1,-..,2,) =& Ra(z1,...,T,)) for two n-ary relation names

Ri, Ry with Ry <r Rs

Now we have reached the following situ- 2

ation. We have two logical §ystems with (CGA7 ) — (FOLA, F)

a calculus F, and two mappings between —

them: 14

It is well accepted that existential graphs and hence simple conceptual graphs
with negations are equivalent to first order logic. The meaning of this equivalence
shall be elaborated now.

Baader, Molitor and Tobies gave mathematical definitions for ¢ and ¥ and
a proof for $(¥(f)) = f for each formula f € FOL (see | ]). This is an
important part in the equivalence between FOL and CG, but it is in our view not
sufficient. To comprehend this, note that every injective mapping ¥ : FOL — CG
and its inverse mapping ¢ := ¥~' : CG — FOL fulfill $(¥(f)) = f. So the
condition ¢(¥(f)) = f seems not to capture the whole meaning of the statement
‘simple conceptual graphs with cuts are equivalent to first order logic’. The
crucial point is that FOL and CG are not only sets of graphs resp. formulas but
sets which are quasiordered by their particular syntactical entailment relations
F (i.e. each relation F is reflexive and transitive). Of course, one expects that
® and V¥ respect these entailment relations. In fact ¢ and ¥ are quasiorder-
isomorphisms between (CG,F) and (FOL,F) which are mutually inverse. This
is captured by the following crucial theorem:



Theorem 1 (Main Syntactical Theorem for the Mappings ¢ and V).
Let 8, &1 and &, be concept graphs over A and let f, f1, f» be FOL-formulas
over A. Then the following implications hold:

2) it fa = U(fi)F¥(f)
3) &+ U(P(B)) and U (H(G)) F &
4) fE®E(f)) and 2(¥(f)) - f

Instead of giving the proof for this theorem here (the proof for it will be in
[ ]), we want to emphasize that four conditions of the theorem are logically
independent, e.g. none of the conditions can be derived from the remaining three
(hence all conditions have to be proven seperately). To illustrate this, we provide
two extremely simple examples. Each of these examples consists of two very small
ordered sets (which represent for the quasiordered sets (CG*, F) and (FOL#, I))
and two mappings between them (which represent the mappings ¢ and ¥).

To see that 1) cannot be derived from 2)-4) have a look at the two ordered
sets in the left example of Figure ll each consiting of two elements and the two
mappings between them. Note that the mappings are mutually invers, therefore
the conditions 3) and 4) are fulfilled. But only one mapping is order-preserving,
hence 2) is fulfilled but 1) is not. Because we have one example which satisfies
2)-4), but not 1), we are done. Analogously it can be shown that 2) cannot be
derived from 1), 3) and 4).

To see that 3) cannot be derived from 1),2) and 4), consider the two ordered
sets with their mappings between them in the right example of Figure B It is
easy to see that this example satisfies the conditions 1), 2) and 4), but does not
satisfy 3), hence we are done again. In turn again it can be shown analogously
that 4) cannot be derived from 1)-3).

— 5
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Fig. 3. two examples for Theorem Ml

6 The Semantical Equivalence Between FOL and CG

In Section Ml we have introduced a semantics for concept graphs. Now we proceed
with the well-known semantics for first order logic. Usually the models for FOL-
formulas are not power context families, but relational structures. Relational
structures are pairs M = (M, I), consisting of a universe M and a function I
with 7 : G — M, I:C = B(M) and I : Ry — P(M*) for each k. Relational
structures are obviously closely related to power context families. Roughly spo-
ken: If we remove all intensional information from a power context family, we
get a relational structure. To put it formally:

Definition 11. If (K, A) is a K-interpretation, define M(K, A) = (M,I) as
follows: M := Gy, I(G) := Ag(Q) for all G € G, I(C) := Ext(Ag(C)) for all



C € C and I(R) := Ext(Ag(R)) for all R € R. The relational structure M(K, \)
is called the relational structure of (K, \).

If we look back to the definition of the relation = between power context
families and concept graphs, in particular to the vertex condition and edge con-
dition of Definition [l we realize that only the extensions of formal concepts were
checked. This yields the following lemma:

Lemma 1. For a A-structure (K, A) and a simple concept graph with cuts &,

we have (R,N) E 6 = M(K )\ E &(6)

The proof for this lemma will be given in | ]. Now we are ready to connect
syntax and semantics both for FOL and CG. Remember that we assumed to have
a sound and complete calculus - on FOL, i.e. we have

5) ik fo <= fikEf

Furthermore Lemma M yields an equivalence between the two [=-relations on
FOL and CG. If we resume these facts, we get the following theorem:

Theorem 2 (Main Semantical Theorem for the Mappings ¢ and V).
Let &1 and B4 be concept graphs over A and let fi and fo be FOL-formulas over
A. Then the following equivalences hold:

The proof for this theorem is by far not as extensive as the proof for the
main syntactical theorem. But the proof has to be done, since conditions 5) and
6) are logically independent from the conditions 1)-4) of Theorem Bl This seems
to be evident, since in condititions 1)-4) only the relations - on FOL and CG
appear. But to show exactly that all conditions 1)-6) are logically independent,
we need three little considerations.

1. To see that none of the conditions 1)-4) can be derived from the remaining
conditions, simply define the relations = on FOL and CG as follows: For
two formulas f; and f2 define f; | f2 :<= f1 F fa. For two concept graphs
®; and &;, define B; = B, <= H(B;) | (&2). Obviously, 5) and 6) hold
for arbitrary relations F on FOL and CG. Hence the indepence results for
1)-4) after Theorem M yield appropriate independence results for 1)-6). E.g.
1) cannot be derived from 2)-6).

2. To see that 5) cannot be derived from 1)-4) and 6), define = on FOL and
CG as follows: For two formulas f; and f, always set f; = fo, and for two
concept graphs &; and B, always set &; |= B, too. Since |= does not appear
in the condititions 1)-4), these conditions still hold, and it is easy to see that
6) is fulfilled, too, but 5) is not satisfied.

3. To see that 6) cannot be derived from 1)-5), define = on FOL and CG as
follows: For two formulas f; and fs define fi | f2 :<= fi1 F fa. For two
concept graphs &1 and &, always set &; [~ G,. Again it is easy to see that
1)-5) hold, but 6) does not.



To summarize the above argument: If we want a full syntactical and semanti-
cal equivalence, we have to prove all six conditions 1)-6) from Theorems [l and il
But once we have done this, we immediately get the soundness and completeness
for the calculus on concept graphs:

Theorem 3 (soundness and completeness for concept graphs).
Let &1 and &4 be concept graphs over A. Then it holds:

&1 F &y <~ @1'262

Proof:  ®; F &y =3 &(6,) F 8(62) <5 6(&)) = 6(®s) <5 6, =6, O
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