
Negations in Simple Conept GraphsFrithjof DauTehnishe Universit�at Darmstadt, Fahbereih MathematikShlo�gartenstr. 7, D-64289 Darmstadt, dau�mathematik.tu-darmstadt.deAbstrat. The aim of this paper is to mathematially introdue nega-tion to onept graphs (whih are a mathematial modi�ation of onep-tual graphs) as a well-de�ned syntatial onstrut. First o�, we disusssome questions whih arise when negations for oneptual graphs arede�ned. In our view, a solution for these questions is to express nega-tions by uts in the sense of Peire's theory of existential graphs. Aset-theoretial semantis for (nonexistential) onept graphs with uts isdeveloped in the framework of ontextual logi. A modi�ation of Peire'salpha-alulus, whih is sound and omplete, is presented.1 MotivationConeptual graphs are based on the existential graphs of Charles Sanders Peire.These graphs onsist of lines alled lines of identities, prediate names of arbi-trary arity and ovals around subgraphs whih are used to negate the enlosedsubgraph. The following three examples are well known:CAT MATON CAT MATON�� �� CAT MATON�� ��The meanings of these graphs are: `a at is on a mat', `no at is on any mat'and `there is a at and there is a a mat suh that the at is not on the mat'.As Peire says, "That a proposition is false is a logial statement about it, andtherefore in a logial system deserves speial treatment." ([Pe98℄). The graphi-al element oval whih Peire used to negate its enlosure has been transferredto ontext boxes in oneptual graphs. These boxes are used to express thatsome information is valid in spei� ontexts or situations. Hene, the hara-ter of negation as logial operator in existental graphs hanged to a metalevelharater in oneptual graphs. Of ourse, in knowledge representation and nat-ural language, negations are unavoidable. So the feature to express negations isdesirable in onept graphs.To handle negation in onept graphs, we need to ahieve the following aims:For the mathematial treatment, formation rules for the well-formed formulasmust exist that an express negations, and negation has to be overed by rulesof inferene. To do this in the spirit of Peire, the semantis of negation hasto be intelligible, and the graphial representation of negations must be easilyreadable and intuitively understandable (whih has been an important goal inthe theory of oneptual graphs from the very beginning, too).

Negations our in several approahes for oneptual graphs. Why we do notadopt and mathematizise one of these approahes shall be explained in the restof this setion.In order to handle negations, a spei� syntatial element of the well-formedformulas has to be delared to express them. For this purpose, the standard ap-proah use a ontext box of type Propositionwhih is linked to a unary relationof type neg ([So99℄). Sometimes, these speial ontext boxes are abbreviated byontext boxes of type Negation (e.g. [So00℄) or by drawing a simple retanglewith the mathematial negation symbol : ([So99℄). Some approahes use theseretangles without delaring whether the box is a spei� syntatial element orjust an abbreviation for ontext boxes of a spei� type (e.g. [We95℄). But botha alulus and a translation of oneptual graphs into other formal languages(like the translation to �rst order logi with the �-operator), have to respet thelogial role of negation.So, if negation is expressed just by speial ontext boxes, any alulus andany tranlation has to treat these speial ontext boxes di�erently from all otherontext boxes. For example, if negation is expressed by ontext boxes of typeNegation, a alulus should allow the nested boxes in the following graph to beerased (and vie versa, to be introdued again):: : : �� �� . . .NEGATION:NEGATION:This seems to be not possible in any alulus whih does not treat the nega-tion boxes separately (like the alulus of Prediger ([Pr98b℄) or any aluluswhih is based on projetions).If negation is expressed with ontexts of type Proposition, linked to a unaryrelation neg, another diÆulty appears. This shall be shown by the following twooneptual graphs:CAT �� �� MATon and CAT �� �� MATonPROPOSITION:The �rst graph is well known: Its meaning is `a at is on a mat'. In partiular,the graph laims to be true. The meaning of the seond graph is, stritly speak-ing, `there exists a proposition, whih states that a at is on a mat' ([So99℄),and therefore di�erent to the meaning of the �rst graph. Indeed; in none of theommon aluluses, one graph an be derived from the other one. Hene it isproblemati to express the negation of the �rst graph by the seond graph witha relation neg.To summarize: It seems to be diÆult to introdue negation as a speialontext box. These ontext boxes have to be treated di�erently to other boxesin the alulus and in any translation from oneptual graphs to other formallanguages (like the operator �). This yields the following onlusion: For themathematial treatment of negation in onept graphs, in the de�nition of theirwell-formed formulas there should be a spei� syntatial element whih is usedto express negation.



The next step has to larify the semantis, i.e. the meaning, of negation.To prepare this, we will disuss a small example. Consider the true proposition`the painter Rembrandt reated the painting `the nightwath", whih an betranslated to the following oneptual graph:PAINTER: Rembrandt �
 �	 PAINTING: the nightwathreateThis graph represents not only the information that Rembrandt reated `thenightwath', but also that Rembrandt is a painter and `the nightwath' is a paint-ing. Now, onsider the painting `a starry night' instead of `the nightwath'. Thispainting was reated by van Gogh, so the proposition `the painter Rembrandtdid not reate the painting `the starry night" is true. How an this propositionbe transformed to a oneptual graph? The following graph is a �rst attempt:PAINTER: Rembrandt �
 �	 PAINTING: the starry nightreateThis graph is not the translation of the former proposition: In the proposition,only the verb `to reate' is negated, but in the graph, the negation box alsoenloses the information that Rembrandt is a painter and `the starry night' is apainting. The information in the onept boxes an fail, too, as an be seen inthe following graph:COMPOSER: van Gogh �
 �	 PAINTING: the starry nightreateThis graph is true although van Gogh did reate `the starry night'. In par-tiular, this graph should not be read asThe omposer Van Gogh did not reate the painting `a starry night'.But this understanding is suggested when Sowa in [So00℄ says, that the meaningof the graph [Negation: [Cat: Yoyo℄!(On)![Mat℄℄ is `the graph denies thatthe at Yoyo is on a mat'. Now, the goal is to negate only the verb `to reate'in the false proposition `the painter Rembrandt reated the painting `the starrynight". This problem has already been addressed, one approah for its solutionis the following graph:
> :�PAINTER: Rembrandt �
 �	 > :�PAINTING: the starry nightreateFig. 1. CG for `the painter Rembrandt did not reate the painting `a starry night"Indeed, this graph expresses the proposition `the painter Rembrandt did notreate the painting `the starry night'. But obviously, the aim of making onep-tual graphs easily readable and intuitively understandable is not ful�lled.

Expressing identity in oneptual graphs with oreferene-links or oreferene-sets leads to another lass of diÆulties. In partiular, the meaning of oreferene-links onneted to a onept box within a negation is not straightforward. Thisshall be explained next:In oneptual graphs, oreferene-links (whih are used to express oreferene-sets ([So99℄)) are used to express the identity of two entities: "Two onepts thatrefer to the same individual are oreferent. [. . . ℄ To show that they are orefer-ent, they are onneted with a dotted line, alled a oreferene link." ([So92℄).Consider the following graph:> :� > :� > :�Fig. 2. oneptual graph for 9x9y:x 6=yAording to Sowa ([So00℄), the operator � translates this graph into the �rstorder logi formula 9x9y:9z(z=x^z=y), whih is equivalent to 9x9y:x 6= y. Inpartiular, the three onept boxes annot refer to the same individual. Note that� assigns di�erent variables to the generi markers of di�erent onept boxes,even if they are onneted with a oreferene-link. These variables are expliitlyset to be equal in the formula, and they are equated inside the negated part ofthe formula. But sine the links in the graph looks symmetri, it is not learto a reader why the equating in the formula is plaed inside and not outside ofthe negated subformula. This ambiguity an be seen even better in the followingexample: PAINTER: Rembrandt PAINTER: Van GoghIf � translates this graph to PAINTER(R) ^ :(R = V G ^ PAINTER(V G)),the resulting formula is true, but if � translates this graph to PAINTER(R) ^Rembrandt = V G ^ :(PAINTER(V G)) the resulting formula is not true (thenames in the formulas are abbreviated by R and V G). Hene, in order to under-stand the right meaning of this graph, the reader must have in mind the impliitagreement that equality is always plaed in the inner ontext.If we aept this meaning of orerene links, the next step is is to makelear whih syntatial element in the well-formed formulas is used for them,and how they are handled by a alulus. In the abstrat syntax of oneptualgraphs ([So99℄), oreferene-links are generalized to oreferene-sets. For exam-ple, Figure 2 has two oreferene sets whih are represented by oreferene-links.Coreferene-sets are suÆient to handle oreferene in oneptual graphs withnegations. But still rules are needed that treat these sets in a sound and om-plete way (for example, there have to be rules whih allow a link to be drawn orerased from a onept box to itself). Some aluluses lak rules like this.To summarize again: Introduing oreferene sets to express identity maylead to misunderstandings of their meaning and to gaps in their syntatialimplementation.



To ope with all the mentioned problems, we suggest the following: First,negations should be introdued as a new syntatial element, namely the ovalsof Peire, whih an be drawn around arbitrary parts of a oneptual graph. Todistinguish these ovals from the ovals whih are drawn around relation names,we propose drawing them in bold. For example, inPAINTER: Rembrandt �
 �	 PAINTING: the starry nightreateonly the relation reate has to be negated, and inCOMPOSER: van Gogh �
 �	 PAINTING: the starry nightreateonly the onept box COMPOSER: van Gogh has to be negated. The result-ing oneptual graphs are:PAINTER: Rembrandt �
 �	 PAINTING: the starry nightreate�� ��COMPOSER: van Gogh �
 �	 PAINTING: the starry nightreate�� ��Beause the present interpretation of oreferene-links is not intuitive in somesense, we suggest to introdue a speial binary relation id (as in �rst order logi).The advantages of this approah are1. id an be trated like other relations and2. the identity an be negated without loss of readability.In our view this yields a more understandable notion of identity (as understoodin mathematis). For example, the meaning of the graph> :� �� ��id > :��Æ �Fig. 3. CG with negation ovals for 9x9y:x 6=yis `there exist at least two things'. Thus, it has the same meaning as the graphin Figure 2, but is muh simpler. Furthermore, it shows that id is a propersyntatial extension and not a diret mathematization of oreferene links.Sine the syntatial elements whih allow negations and identity are ex-tended and in this approah, every oneptual graph with negation boxes andoreferene-links an be translated into a onept graph with negation ovalsand the relation id. Of ourse, negation boxes (for example, ontext boxes oftype Negation) are translated to negation ovals. A oreferene-link between twoontext boxes is translated into a relation id between the boxes suh that therelation node id is plaed in the negation oval of the dominated ontext box. Wewill exemplify this with the following: The oneptual graph> :� > :� > :�is translated to the following oneptual graph with negation ovals and the re-lation id:

> :� �
 �	id > :� �
 �	id > :��� ��Fig. 4. another CG with negation ovals for 9x9y:x 6=yThis graph an be transformed to the graph in Figure 3, whih has the samemeaning, but looks muh simpler. On the other hand, onept graphs with nega-tion ovals and the relation id an be translated to graphs with negation boxesand oreferene-links. But beause negation ovals need not inlude subgraphs,but arbitrary subsets of onept nodes and relations nodes, this translation ismore ompliated than the translation in the other diretion. For example: Be-fore the graph in Figure 3 an be translated, it has to be transformed into thegraph in Figure 4.The approah we present here is losely related to the original ideas of Peire.It is easier to mathematize than approahes based on onept boxes of a spei�type. In this paper, our approah shall be elaborated for simple onept graphswithout generi markers, but with negation ovals and the relation id. In parti-ular, the syntax for these graphs is de�ned, an extensional semantis for thesegraphs is introdued (whih is based on power ontext families), and a soundand omplete alulus is presented. Furthermore, this approah allows to de�nemathematially the operator � on simple onept graphs (whih maps graphsto �rst order logi formulas) and its inverse operator 	 (whih maps �rst orderlogi formulas to graphs) suh that both respet the (syntatial or semanti)entailment relation on graphs and formulas, respetively. In partiular, the ex-pressiveness of simple graphs and �rst order logi formulas is the same. This willbe elaborated in a work whih is in progress now.2 Basi De�nitionsSimple onept graphs are introdued by Prediger in [Pr98b℄ as mathematiallyde�ned syntatial onstruts. We take into aount her approah and extendedit to inlude the possibily to express negations by using uts and the possibilityto express identity by using a speial binary relation id.First we have to start with ordered sets of names for objets, names andrelations. These orders represent the oneptual ontology of the domain we on-sider.De�nition 1. An alphabet of oneptual graphs is a tripel A := (G; C;R) suhthat{ G is a �nite set whose elements are alled objet names{ (C;�C) is a �nite ordered set with a greatest element > whose elements arealled onept names{ (R;�R) is a union of �nite ordered sets (Rk;�Rk), k = 1; : : : ; n (for ann 2 N with n � 1) whose elements are alled relation names. Let id 2 R2.



Now we an de�ne the underlying strutures of onept graphs with uts.This de�nition extends the de�nition of direted multi-hypergraphs given in[Pr98b℄ by uts, so that negations an be expressed.De�nition 2. A direted multi-hypergraph with uts (of type n) is a struture(V;E; �; Cut; area) suh that{ V and E are �nite sets whose elements are alled verties and edges, respe-tively,{ � : E ! S nk=1V k (for a n 2 N; n � 1) is a mapping,{ Cut is a �nite set whose elements are alled uts and{ area : Cut ! P(V [ E [ Cut) is a mapping suh that  =2 area() for eah 2 Cut and, for two uts 1; 2 with 1 6= 2, exatly one of the followingonditions holds:i) f1g [ area(1) � area(2),ii) f2g [ area(2) � area(1),iii) (f1g [ area(1)) \ (f2g [ area(2)) = ;.For an edge e 2 E with �(e) = (v1; : : : ; vk) we de�ne jej := k and �(e)��i := vi.For eah v 2 V , let Ev := fe 2 E j 9 i: �(e)��i = vg, and analogously for eahe 2 E, let Ve := fv 2 V j 9 i: �(e)��i = vg. If it annot be misunderstood, wewrite e��i instead of �(e)��i.The notion of uts and areas is losely related to the ideas of Peire, as theyare desribed in the work of Roberts (see [Ro73℄). Peire negated parts of anexistential graph just by drawing an oval around it. This oval (more exatly justthe line whih is drawn on the sheet of assertion) is alled a ut. In partiular, aut is not a graph. The spae within a ut is alled its lose or area. So the areaof a ut  ontains verties, edges and other uts, even if they are deeper nestedinside other uts, but not the ut  itself. All the edges, verties and uts in thearea of  are said to be enlosed by .Cuts do not interset eah other by the de�nition of Peire. So for two dif-ferent uts 1; 2, exatly one of the following ases ours:{ 1 and its area is entirely enlosed by 2,{ 2 and its area is entirely enlosed by 1,{ 1 and its area and 2 and its area have nothing in ommon.Obvioulsy, these three ases oinide with the three onditions for the map-ping area in De�nition 2. Now, let us �rst mention some simple properties forthe mapping area whih an be shown easily:{ 1 6= 2 ^ area(1) = area(2) =) area(1) = area(2) = ;{ ; ( area(1) ( area(2) =) 1 2 area(2){ 1 2 area(2) =) area(1) � area(2)In many ases it makes sense to treat the outermost ontext, the sheet ofassertion, as an (additional) ut. If we abbreviate the sheet of assertion by >,we immediately ome to the following de�nition:

De�nition 3. If Cut is a set of uts of a direted multi-hypergraph with uts andif area is the appropriate mapping, then let Cut> := Cut _[f>g and area(>) :=V [ E [ Cut.It is easy to see that this extension still satis�es the onditions for the map-ping area whih are given in De�nition 2. This means that the properties wehave just shown for Cut hold for Cut>, too.By 1 � 2 :() 1 2 area(2) a anonial ordering on Cut>, whih is a treewith > as greatest element, is de�ned. This an be veri�ed with the propertiesfor the mapping area.Obviously, eah edge and vertex is enlosed diretly (and not deeper nested)in a uniquely given ut . For the further work, the notion of a subgraph is needed.It seems to be evident that a subgraph is enlosed diretly in a uniquely given ut, too. The notions of being diretly enlosed and subgraph shall beome preisethrough the following de�nition:De�nition 4. Let G = (V;E; �; Cut; area) be a direted multi-hypergraph withuts.{ For eah k 2 V [ E [ Cut we de�neut(k) := minf 2 Cut> j k 2 area()gut(k) is alled the ut of k and ut(k) is said to enlose diretly the vertex(the edge, the ut) k.{ The graph G0 = (V 0; E0; �0; Cut0; area0) is alled a subgraph of G in the ut if  2 Cut> is the smallest ut suh that the following onditions hold:� V 0 � V;E0 � E;Cut0 � Cut and the mappings �0 and area0 are justthe restritions of � and area to E0 resp. Cut0 (and are therefore wellde�ned),� area(0) � V 0 [E0 [ Cut0 for eah 0 2 Cut0,� ut(k0) 2 Cut0 [ fg for eah k0 2 V 0 [ E` [ Cut0,� v 2 V 0 for eah edge e0 2 E0 and every vertex v 2 Ve.We write: G0 � G and ut(G0) = .Note, that for eah vertex (or edge, ut or subgraph), the set of all utsontaining the vertex forms a hain. If the number of uts enlosing the vertexis even, the edge is said to be evenly enlosed, and analogously, if the number isodd, the vertex is said to be oddly enlosed. More formally:De�nition 5. Let G = (V;E; �; Cut; area) be a direted multi-hypergraph withuts, let k be a subgraph or an element of V [E [Cut>. Let n be the number ofuts whih enlose k (n := jf 2 Cut j  2 area()gj). If n is even, k is said tobe evenly enlosed, otherwise k is said to be oddly enlosed. An evenly enlosedut is alled positive, an oddly enlosed ut is alled negative.Now, the struture of simple onept graphs with uts is derived from thestruture of direted multi-hypergraphs with uts by additionally labeling the



verties and edges with onept names and relation names, respetively, andby assigning a referene to eah vertex. In partiular all de�nitions onerningdireted multi-hypergraphs with uts an be transferred to onept graphs. Soin the following we will deal with subgraphs of onept graphs et.De�nition 6. A (nonexistential) simple onept graph with uts over the al-phabet A is a struture G := (V;E; �; Cut; area; �; �), where{ (V;E; �; Cut; area) is a direted multi-hypergraph with uts{ � : V [E ! C [R is a mapping suh that �(V ) � C and �(E) � R, and alle 2 E with v(e) = (v1; : : : ; vk) satisfy �(e) 2 Rk{ � : V ! G is a mappingIt is not lear what a graph ontaining verties with more than one objet,enlosed by a ut, means, and this might lead to misunderstandings. For thisreason, the mapping � maps verties only to elements of G, not to subsets ofG (in ontrast to the de�nition of Prediger in [Pr98b℄). Furthermore, � an benaturally extended to the edges: If e is an edge with v(e) = (v1; : : : ; vk), let�(e) := (�(v1); : : : ; �(vn)).3 SemantisUsually, a semantis for oneptual graphs is given by a translation of graphs intoformulas of �rst order logi, hene into formulas of another syntatially givenstruture. In Prediger (f. [Pr98a℄, [Pr98b℄), a di�erent approah is presented.There, an extensional semantis whih is based on power ontext families asmodel strutures is introdued. The motivation for this ontextual semantisan be read in [Pr98a℄. With this semantis, Prediger develops a semantialentailment relation between onept graphs, and a sound and omplete alulusfor this entailment relation is presented. Now this approah shall be extended toonept graphs with uts.In onept graphs without uts, only the onjuntion of positive informationan be expressed. For this reason it was possible for Prediger to onstrut foreah onept graph a standard model in whih all the information of the oneptgraph is enoded. Standard models have been an additional possibility (besidesthe entailment relation and the alulus) for doing reasoning with onept graph.If negations are used, one an express with onept graphs the disjuntion ofpiees of information. But disjuntion of information an not be anoniallyenoded in standard models. Thus if we introdue negations to onept graphs,unfortunately the onstrution of standard models has to be dropped.Now, let us reall the basi de�nitions of Prediger.De�nition 7. A power ontext family ~K := (K 0 ; : : : ;Kn ) of type n (for ann 2 N) is a family of ontexts K k := (Gk;Mk; Ik) that satis�es Gk � (G0)k foreah k = 1; : : : ; n. Then we write ~K := (Gk ;Mk; Ik)k=0;:::;n. The elements of theset R~K := Snk=1B(K k ) are alled relation-onepts.

Interpreting a onept graph in a power ontext family, the objet names willbe interpreted by objets, e.g. by elements of the set G0. The onept names ofour alphabet will be interpreted by onepts in the ontext K 0 , and relationnames of arity k will be interpreted by relation-onepts in the ontext K k . Ofourse, every reasonable interpretation has to respet the orders on the names.This leads to the following de�nition:De�nition 8. For an alphabet A := (G; C;R) and a power ontext family ~K , weall the union � := �G _[�C _[ �R of the mappings �G :G ! G0, �C : C ! B(K 0 )and �R:R ! R~K a ~K -interpretation of A, if �C and �R are order-preserving,�C(>) = >, �R(Rk) � B(K k ) for all k = 1; : : : ; n, and (g1; g2) 2 �R(id) ,g1 = g2 for all g1; g2 2 G hold. The tupel (~K ; �) is alled ontext-interpretationof A or, aording to lassial logi, A-struture.Reall that we de�ned �(e) := (�(v1); : : : ; �(vn)) for edges e with v(e) =(v1; : : : ; vk). Beause �G is a mapping on the set G of objet names, it an benaturally extended to tupels of objet names. In partiular we get �G(�(e)) :=(�G(�(v1)); : : : ; �G(�(vn))).Now we an de�ne whether a onept graph is valid in an A-struture. Thisis done in a anonial way:De�nition 9. Let ~K be a power ontext family and let G be a onept graph.Indutively over  2 Cut>, we de�ne ~K j= G[℄ in a anonial way:~K j= G[℄(){ �G(�(v)) 2 Ext(�C(�(v))) for eah v 2 V with ut(v) =  (vertex ondition){ �G(�(e)) � Ext(�R(�(e))) for eah e 2 E with ut(e) =  (edge ondition){ ~K 6j= G[0℄ for eah 0 2 Cut with ut(0) =  (iteration over Cut>)For ~K j= G[>℄ we write ~K j= G.If we have two onept graphs G1, G2 suh that ~K j= G2 for eah A-struturewith ~K j= G1, we write G1 j= G2.Intuitively, ~K j= G[℄ an be read as ~K j= G��area(). But note that generallyarea() is not a subgraph of G. Therefore this should not be understood as apreise de�nition.4 CalulusThe following alulus is based on the �-alulus of Peire for existential graphswithout lines of identity. These existential graphs onsist only of propositionalvariables and ovals and are equivalent to propositional alulus.For the sake of intelligibility, the whole alulus is desribed using ommonspoken language. Only the rules `erasure', `iteration', and `merging two verties'will be desribed in a mathematially preise manner to show that using full



sentenes does not imply the loss of preision. This preision is de�nitely ne-essary beause there must not be any possibility for misunderstandings of therules. The rule `iteration' for example, says that a subgraph of a graph an beopied into the same or a nested ontext. If this is to have a unique meaning,one requires a preise de�nition of `subgraph' and `same or nested ontext'.First, we present the whole alulus. The �rst �ve rules of the alulus arethe original rules of Peire's �-alulus. The further rules are needed to enom-pass the orders on the onept- and relation names, to enompass the speialproperties of the onept name > and the relation name id and to deal with thepossibility that di�erent verties an have the same referene.De�nition 10. The alulus for (nonexistential) simple onept graph with utsover the alphabet A.{ erasureIn positive uts, any diretly enlosed edge, isolated vertex and losed sub-graph may be erased.{ insertionIn negative uts, any diretly enlosed edge, isolated vertex and losed sub-graph may be inserted.{ iterationLet G0 := (V0; E0; �0; �0; �0; Cut0) be a subgraph of G and let � � ut(G0)be a ut suh that � =2 Cut0. Then a opy of G0 may be inserted into �.{ deiterationIf G0 is a subgraph of G whih ould have been inserted by rule of iteration,then it may be erased.{ double negationDouble uts (two uts 1; 2 with ut�1(2) = f1g) may be inserted or erased.{ isomorphismA graph may be substituted by an isomorphi opy of itself.{ generalizationFor evenly enlosed verties and edges the onept names respetively relationnames may be generalized.{ speializationFor oddly enlosed verties and edges the onept names respetively relationnames may be speialized.{ >-ruleFor eah objet name g, an isolated vertex > : g may be inserted or erasedin arbitrary uts.{ merging two vertiesFor eah objet name g, a vertex > : g may be merged into a vertex P : g(i.e. > : g is erased and, for every edge e, e(i) = > : g is substituted bye(i) = P : g ).Two verties in the same ut and with the same referene may be merged.{ reverse merging of two vertiesA merging of two verties may be reversed.

{ rules of identity� reexivityFor arbitrary verties v edges e with �(e) = id, ut(e) = ut(v) ande��1 = e��2 = v may be inserted or erased.� symmetryIf e is an edge with �(e) = id, then e may be substituted by an edge e0whih ful�lls e0��1 = e��2, e0��2 = e��1 and ut(e0) = ut(e).� transitivityIf e1, e2 are two edges with �(e1) = �(e2) = id, ut(e1) = ut(e2) ande1��2 = e2��1, then edges e with �(e) = id, ut(e) = ut(e1), e��1 = e1��1and e��2 = e2��2 may be inserted or erased.� ongrueneIf e is an edge with �(e��1) = g1, �(e��1) = g2 and �(e) = id, then �(e��1) =g1 may be substituted by �(e��1) = g2.To see how these rules an be written down mathematially, here are thepreise de�nitions for the rules `erasure', `iteration' and `merging two verties'.{ If G := (V;E; �; �; �; Cut) is a onept graph with the losed subgraph G0 :=(V0; E0; �0; �0; �0; Cut0) and if � is a ut with � =2 Cut0, then let G0 be thefollowing graph:� V 0 := V �f1g [ V0�f2g� E0 := E�f1g [ E0�f2g� �0((e; i)) = ((v1; i); : : : ; (vn; i)) for (e; i) 2 E0 and �(e) = (v1; : : : ; vn)� �0((e; i)) := �(e) and �0((v; i)) := �(v) for all (e; i) 2 E0, (v; i) 2 V 0� �0((v; i)) = �(v) for all (v; i) 2 V 0� Cut0 := Cut�f1g [ Cut0�f2g� area0 is de�ned as follows: Let  2 Cut.for  2 Cut0 let area0((; 2)) := area()�f2gfor  6� � let area0((; 1)) := area()�f1gfor  � � let area0((; 1)) := area()�f1g [ (V0 [ E0 [ Cut0)�f2gThen we say that G0 is derived from G by iterating the subgraph G0 into theut �.{ If G := (V;E; �; �; �; Cut) is a onept graph with the losed subgraph G0 :=(V0; E0; �0; �0; �0; Cut0), then let G0 be the following graph:� V 0 := V nV0� E0 := EnE0� �0 := �jE0� �0 := �jV 0[E0� �0 := �jV 0� Cut0 := CutnCut0� area0(0) := area(0)��V 0[E0Cut0Then we say that G0 is derived from G by erasing the subgraph G0.{ If G := (V;E; �; �; �; Cut) is a onept graph with two verties v1; v2 2 V ,then let G0 be the following graph:� V 0 := V nfv1g



� E0 := E� �0 is de�ned as follows: For �(e)��i = v let �0(e)��i = � v v 6= v1v2 v = v1 .� �0 := �jV 0[E� �0 := �jV 0� Cut0 = Cut� area0(0) := area(0)��V 0[E[CutThen we say that G0 is derived from G by merging v2 into v1.These rules are sound and omplete with respet to the given semantis (seeTheorem 1). Instead of proving this theorem formally, some heuristis for therules are presented.First note, that all the rules are in some sense dually symmetri with respetto positive and negative uts. More preisely, every rule whih an be applied inone diretion in positive uts an be applied in the opposite diretion in negativeuts, and vie versa. So if a rule an only be applied in positive ontexts, thisrule has a ounterpart for negative ontexts (like erasure and insertion or likegeneralization and speialization). All other rules apply both to positive andnegative ontexts.The �rst �ve rules are sound and omplete onerning the lassial proposi-tional alulus. If all verties and edges would be understood as logially inde-pendent propositional variables, these rules would be enough. The rules `gener-alization', `speialization' and `>-rule' enompass the orders on the onept andrelation names. Note that > is not only the greatest element of all onepts: Thesemantis for > implies that every objet belongs to the extension of the onept>. Thus the generalization rule does not enompass all properties of the onept>, and the >-rule is neessary. The same is true for the relation id. In fat itis a ongruene relation by de�nition. This is enompassed by the id-rules. Thespeialization rule an be derived from the other rules, but it is added to keepthe alulus symmetri. The rules `merging two verties' and `reverse merging oftwo verties' deal with the fat that one objet may be the referene for di�erentverties. With these rules it is possible to transform every onept graph into anequivalent graph in whih no ut intersets a relation line. More preisely:De�nition 11. A onept graph is alled free of intersetions, if it ful�lls thefollowing ondition: 8e2E 8v2V : v 2 Ve =) ut(v) = ut(e)It follows from the rules `merging two verties' and `reverse merging of two ver-ties' that every onept graph is equivalent to a graph free of intersetions. Andthese graphs are easy to read: They have a form whih is losely related to theexistential graphs without lines of identity, and the soundness and ompletenessof the �rst �ve rules onerning existential graphs an be applied now. This leadsto the following essential theorem:Theorem 1 (soundness and ompleteness of the alulus).Two nonexistential, simple onept graph G1, G2 with uts over A satisfyG1 ` G2 () G1 j= G2

5 Future WorkHow to proede with this work is lear. First the approah has to be extendedto inlude graphs with generi markers. The �-operator for these graphs has tobe elaborated and it has to be proven that simple onept graphs with negationovals and identity are equivalent to �rst order logi. In part, this has alreadybeen done (e.g. [BMT98℄). Afterwards, the approah should be extended to thenested ase. It seems reasonable that nested graphs are equivalent to a ertainlass of formulas of modal logi in suh a way that nestings will be interpreted asdi�erent possible worlds, whih are onneted by the struture of the nestings.And again, a semantis and a sound and omplete alulus have to be developed.Referenes[BMT98℄ F. Baader, R. Molitur, S. Tobies: The Guarded Fragment of ConeptualGraphs. RWTH LTCS-Report.http://www-lti.informatik.rwth-aahen.de/Forshung/Papers.html[CMS98℄ M. Chein, M.-L. Mugnier, G. Simonet: Nested Graphs: A Graph-basedKnowledge Representation Model with FOL Semantis, Rapport deReherhe, LIRMM, Universit�e Montpellier II, 1998.[GW99a℄ B. Ganter, R. Wille: Formal Conept Analysis: Mathematial Foundations.Springer, Berlin-Heidelberg-New York 1999.[GW99b℄ B. Ganter, R. Wille: Contextual attribute logi, in: W. Tepfenhart, W. Cyre(Eds.): Coneptual Strutures: Standards and Praties, Springer Verlag,Berlin{New York 1999, 377-388.[LK96℄ D. Lukose, R. Kremer: Knowledge Engineering: PART A, Knowledge Rep-resentation. http://www.ps.ualgary.a/�kremer/ourses/CG/[Pe98℄ C. S. Peire: Reasoning and the Logi of Things. The Cambridge ConferenesLetures of 1898. Ed. by K. L. Kremer, Harvard Univ. Press, Cambridge 1992[Pr98a℄ S. Prediger: Kontextuelle Urteilslogik mit Begri�sgraphen. Ein Beitrag zurRestrukturierung der mathematishen Logik, Shaker Verlag 1998.[Pr98b℄ S. Prediger: Simple Conept Graphs: A Logi Approah, in: M, -L. Mugnier,M. Chein (Eds.): Coneptual Strutures: Theory, Tools and Appliations,Springer Verlag, Berlin{New York 1998, 225{239.[Ro73℄ D. D. Roberts: The Existential Graphs of Charles Sanders Peire, MoutonThe Hague { Paris 1973.[So84℄ J. F. Sowa: Coneptual Strutures: Information Proessing in Mind andMahine. Addison Wesley Publishing Company Reading, 1984.[So92℄ J. F. Sowa: Coneptual Graphs Summary, in: T. E. Nagle, J. A. Nagle,L. L. Gerholz, P. W. Eklund (Eds.): Coneptual Strutures: urrent researhand pratie, Ellis Horwood, 1992, 3{51.[So99℄ J. F. Sowa: Coneptual Graphs: Draft Proposed Amerian National Stan-dard, in: W. Tepfenhart, W. Cyre (Eds.): Coneptual Strutures: Standardsand Praties, Springer Verlag, Berlin{New York 1999, 1-65.[So00℄ J. F. Sowa: Knowledge Representation: Logial, Philosophial, and Compu-tational Foundations. Brooks Cole Publishing Co., Pai� Grove, CA, 2000.[We95℄ M. Wermelinger: Coneptual Graphs and First-Order Logi, in: G. Ellis et al.(Eds.): Coneptual Strutures: Appliations, Implementations and Theory,Springer Verlag, Berlin{New York 1995, 323{337.


