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Abstract

Diagrammatic reasoning is a tradition of visual logic that allows sentences that are equivalent
to first order logic to be written in a visual or structural form: usually for improved usability.
A calculus for the diagram can then be defined that allows well-formed formulas to be derived.
This calculus is intended is the analog of logical inference.

Description logics (DLs) have become a popular knowledge representation and processing
language. DLs correspond to decidable fragments of first order logic; their notation is in the
style of symbolic, variable-free formulas. Moreover, DLs are equipped with tableau theorem
provers that are proven to be sound and complete.

Although DLs have roots in diagrammatic languages (such as semantic networks), they are
elaborated in a purely symbolic manner. This paper discusses how DLs can be equivalently
represented in terms of a diagrammatic reasoning system.

First, existing diagrammatic reasoning systems, namely spider- and constraint diagrams, as
well as existential and conceptual graphs, are investigated to determine if they are compatible
with DLs. It turns out that Peirce’s existential graphs are better suited for this purpose than
the alternatives we examine.

The paper then redevelops the DL ALC, which is the smallest propositional DL, by means of
labeled trees, and provides a diagrammatic representation for these trees in the style of Peircean
graphs. We provide a calculus based on C.S. Peirce’s calculus for existential graphs and prove the
soundness and completeness of the calculus. The calculus acts on labeled trees, but can be best
understood as a diagrammatic calculus whose rules modify the Peircean-style representation of
ALC.
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1. Introduction

Description logics (DLs) are a common family of knowledge representation languages
tailored to express knowledge about concepts and concept hierarchies. They include sound
and complete decision procedures for reasoning about such knowledge. One of the main
applications of DLs is their use as the basis for an ontology language, especially popular
for the Semantic Web. In particular, the Ontology Web Language (OWL) – a W3C
recommendation for the knowledge language of the Semantic Web – is based on a specific
and expressive DL termed SHOIN (D) 1 .

The basic building blocks of DLs are concepts (unary predicates), roles (binary rela-
tions) and sometimes individuals, which can be composed by language constructs such
as intersection, union, value or number restrictions to build more complex well-formed
formulas that themselves represent complex concepts and roles. For example, when Man,
Female, Male, Rich, Happy are predefined concepts and if hasChild is a predefined
role, then

Man u ∃hasChild.Female u ∃hasChild.Male u ∀hasChild.(Rich tHappy) (1)

describes the concepts of men who have both male and female children, and where all
the children are rich or happy. Let us call a concept defined in this way as HappyMan.

The formal notation of DLs has the flavour of a variable-free first order predicate logic
(FOL). In fact, DLs correspond to (decidable) fragments of FOL, and like FOL, DLs
have a well-defined, formal syntax, a semantics in the form of Tarski-style models, and a
sound and complete calculi (based on Tableaux-algorithms). It is often emphasised that
DLs offer, in contrast to other knowledge representation languages, sound, complete and
(empirically) tractable reasoning services. A comprehensive overview on DLs is given in
the Description Logic Handbook [4].

The notation of DLs is in the style of the usual linear and symbolic 2 notations of FOL.
The fact that the notation of DLs is variable-free makes them easier to comprehend than
the common FOL formulas which include free variables. Nonetheless, for untrained users,
the symbolic notation of DLs can be hard to learn and comprehend.

A main alternative to the symbolic notation is the development of a diagrammatic repre-
sentation of DLs. It is well accepted that diagrams are in many cases easier to comprehend
than symbolic notations (see for example [48,65,8,67]), and in particular it has been ar-
gued that they are useful for knowledge representation systems [35,46]. This has been
acknowledged by the DL community and is a common view among the broader knowl-
edge representation community [53]. In [52], the introduction to the Description Logic
Handbook, Nardi and Brachman write that besides the possibility of “providing a syntax
that resembles more closely natural language”, a “major alternative for increasing the
usability of Description Logics as a modeling language” is to “implement interfaces where
the user can specify the representation structures through graphical operations.”

Email address: dau@dr-dau.net,peklund@uow.edu.au (Frithjof Dau, Peter Eklund).
1 In SHOIN (D), S stands for the basic DL ALC (equivalent to the propositional modal logic extended

with transitive roles), H stands for role hierarchies, O stands for nominals (classes whose extension is a
single individual), N stands for unqualified number restrictions and D stands for datatypes)[42]
2 We use the term ’symbolic’ according to C.S. Peirce’s classification of signs into ’icons’, ’indices’ and

’symbols’. See Shin [67] for an introduction.
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A first attempt at a diagrammatic representation for DL is can be found in [35], where
Gaines elaborates a graph-based representation for the textual DL CLASSIC, part of
the Kl-One-framework. More recently, the focus has shifted from the development of
proprietary diagrammatic representations to representations within the framework of
UML (Unified Modeling Language). In 2003, the Object Management Group requested a
metamodel for the purpose of defining ontologies. Following this proposal, [12] provides
a UML-based, diagrammatic representation for the OWL DL. In these approaches, the
focus is on a graphical representation of DL, however, as emphasized in many works on
DL (see for example [4]), reasoning is seen as a distinguishing feature of DL and such rea-
soning is not supported diagrammatically by that treatment. Correspondences between
graphical representation of the DL and the DL reasoning system are therefore important
but remain largely unelaborated to date. Similar arguments hold for other popular dia-
grammatic languages like UML and ORM 3 the difference being that, that unlike DLs,
these diagrammatic modeling languages provide no extensional, mathematical semantics,
nor any automated reasoning facilities.

On the other hand, there are some candidate diagrammatic reasoning systems that have
the expressiveness of fragments of FOL or even full FOL. In this paper, we will evaluate
two families of contemporary mathematical diagrammatic reasoning systems, which have
the following two (historical) origins:

(i) The system of Euler Circles and Venn-Diagrams, the latter enriched by C.S. Peirce
to Venn-Peirce-Diagrams (see [66,38]).

(ii) The system of Peirce’s Existential Graphs 4 .

The first system is the background to the contemporary development of spider- and con-
straint diagrams, the latter is background to a contemporary interpretation as conceptual
graphs [70]. Why is it worth considering these diagrammatic reasoning systems as a start-
ing point for a diagrammatic version of DL? Firstly, for all these systems mathematical
elaborations in the general style of mathematical logic exists. These include:

– A well-defined syntax: usually, the syntax is defined at an abstract level (for example
in terms of graph theory), such that the well-formed formulas have diagrammatic
representations. Moreover, the syntax is – like the syntax for DL – variable-free.

– Extensional – Tarski-style semantics – and/or translations to formulas of FOL.
– Sound and complete calculi: usually the rules are defined on the abstract syntax but

mostly they can be understood as manipulations of the represented diagrams.

Therefore, in contrast to data modeling languages like UML and ORM, we have a well-
defined syntax and semantics for the candidate diagrammatic representations. Moreover,
if we adopt one of these systems, we can adopt (partly or completely) the existing cal-
culi as a diagrammatic reasoning service for DL. Finally, over and above the general
arguments for diagrammatic systems, some of the systems investigated in this paper –
constraint and spider diagrams and conceptual graphs – have had their diagrammatic
benefits investigated in user-evaluations [83,64,31,30].

As a specific DL is the corresponding logic behind the OWL, the results of this paper
benefit not only DL, but the Semantic Web more generally. Developing a Semantic Web
language as a mathematical diagrammatic reasoning system has already been carried

3 http://www.orm.net/index.html
4 http://www.existentialgraphs.com/ or (a different site) http://www.existential-graphs.net/
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out for a much simpler language: namely RDF. For RDF, mathematical elaborations
based on graph theory, including a Tarski-style semantics and a sound and complete
calculus based on “projections” (see [5,6]) or via diagrammatic rules (see [24]) have been
elaborated.

In the next three Sections, 2, 3 and 4, the basic notions of description logics, spider-
and constraint diagrams, and existential- and conceptual graphs, are introduced. In the
subsequent Sections 5 and 6, we investigate whether spider- and constraint diagrams and
existential- and conceptual graphs respectively are suited as a starting point for develop-
ing DL as a diagrammatic reasoning system. It will turn out that there are prospects to
use spider- and constraint diagrams for this purpose. However, conceptual graphs and,
as we will show, existential graphs are a much better match. In the three Sections that
follow, ALC is developed as a diagrammatic reasoning system based on Peirce’s exis-
tential graphs. In Section 7, a formalization of ALC by means of labeled trees is given.
Section 8 provides the Peirce style representation of such trees. In Section 9, a calculus
for ALC-trees, based on Peirce’s calculus for existential graphs, is given, and soundness
and completeness proven. Finally, in Section 10, further research is discussed. As we use
several abbreviations in this paper, these are presented in Section 11.

2. Introduction into Description Logics

The vocabulary of any DL consists of concepts, which denote sets of individuals, and
roles, which denote binary relationships between individuals. The starting points are
atomic concepts and roles – concept and role names – from which more complex
concepts and roles are built with constructs such as intersection, union, value or number
restrictions, and so on. Moreover, we usually consider concept vocabularies where we
have a universal concept >. The tables of Figures 1 and 2 provide an overview of the
most important entities and constructors. In both tables, the first column provides the
common name for the entity or constructor, in the second column the syntax is presented.

In DLs concept descriptions gain meaning when they are interpreted in a model. An
interpretation is a pair (∆I , I), consisting of an nonempty domain of the inter-
pretation ∆ and interpretation function I which assigns to every atomic concept
A a set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I ×∆I . For each
atomic role, let I(R−) = {(b, a) | (a, b) ∈ I(R)}, we require I(>) = ∆I . The interpre-
tation function is then extended to arbitrary roles and concept descriptions, as depicted
in the third column of the tables of Figures 1 and 2. In the third column of Figure 2
we use the following notation which will be used in the next section as well: if U is a
set, S ⊆ U × U is a relation, and if A ⊆ U and a ∈ U , then let A.R denotes the set
{u ∈ U | ∃a ∈ A.aRu} (the image of A under R). The set {a}.R is abbreviated a.R. The
sets R.A and R.a are defined analogously.

Depending on the choice of constructors we get different DLs with different levels of ex-
pressiveness. The last column of the table in Figure 2 provides the common letters which
are used to abbreviate the constructors. In this paper, we focus on the description logic
ALC. Literally, this logic has conjunction, negation and value restriction as constructors,
but as C1 tC2 is equivalent to ¬(¬C1 u¬C2), and as ∃R.C can be replaced by ¬∀R.¬C,
it is also assumed that ALC contains disjunction and existential quantification, i.e. ALC
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is the smallest propositionally closed description logic.

atomic concept A AI ⊆ ∆I

universal concept > ∆I

atomic role R RI ⊆ ∆I ×∆I

individuals a aI ∈ ∆I

Fig. 1. Entitites in Description Logics

Class Constructors

Construct Name Syntax Semantics Symbol

conjunction C1 u C2 CI ∩DI AL

disjunction C1 t C2 CI ∪DI U

negation ¬C1 ∆I − CI C

value restriction ∀R.C {x ∈ ∆I | ∀y ∈ xRI : y ∈ CI} A

exists restriction ∃R.C {x ∈ ∆I | ∃y ∈ xRI : y ∈ CI} E

nominals {o1, . . . , on} {oI1 , . . . oIn} O

unqualified number restriction ≥ nR {x ∈ ∆I | |xRI | ≥ n} N

unqualified number restriction ≤ nR {x ∈ ∆I | |xRI | ≤ n} N

qualified number restriction ≥ nR.C {x ∈ ∆I | |xRI ∩ CI | ≥ n} Q

qualified number restriction ≤ nR.C {x ∈ ∆I | |xRI ∩ CI | ≤ n} Q

Role Constructors

Construct Name Syntax Semantics Symbol

inverse role R− {(y, x) | (x, y) ∈ RI} I

role intersection R1 uR2 RI
1 ∩RI

2 R

Fig. 2. Constructors in Description Logics

3. Spider and Constraint Diagrams

Spider diagrams (SDs) and constraint diagrams (CDs) are a diagrammatic reasoning sys-
tem based on Euler circles and Venn-Peirce diagrams. They are inspired by a fragment of
UML which is used for software specifications as an alternative to UML’s textual Object
Constraint Language (OCL). They are elaborated as abstract mathematical structures,
including an extensional semantics and inference rules. In this section, SDs and CDs are
briefly and informally introduced. Particularly, only the diagrams of SDs and CDs are
provided, not the underlying mathematical structures. For the formal definitions we refer
the reader to [77,79].
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3.1. Spider Diagrams

Since the first paper on SDs [37], several elaborations of the ideas have been published
[84]. Most variations of SDs are based on Venn diagrams as a foundation, which can
be propositionally combined in conjunctive normal form. It turns out however that SDs
foundation in Venn-diagrams renders many of them difficult to read: the restriction of
combining these diagrams in conjunctive normal form yields a number of technical prob-
lems that result from the rendering of four or more sets. The final version of SDs has
been published in the PhD thesis of Stapleton [77] – a useful 20 page overview can be
found at [84]. Another source is [79], which provides the definitive SDs paper. In that
treatment SDs are a combination of Venn diagrams and the more user friendly Euler dia-
grams 5 and the restriction to conjunctive normal form is removed. Below, two examples
of so-called unary SDs are depicted.

BA BA C

Fig. 3. Two Spider Diagrams

As in Venn diagrams the bounding rectangles depict the universe (of discourse),
i.e., the ground set of the respective models in which the diagrams are evaluated. We
use the letter U to denote the universe of discourse. The first diagram to the left has
two contours: these are the circles labeled A and B, representing the sets A and B.
The diagram has four zones which represent all combinations of A and B, i.e. A ∩ B,
A−B, B−A, and U − (A∪B). As all possible combinations of A and B are represented,
this SD is a Venn-Peirce diagram as well. The diagram contains two spiders: The
shaded zone representing A−B is the habitat of the first spider, the region composed
of the zones A − B and B − A, i.e. the region which represents B, is the habitat of
the second spider. Each spider denotes a uniquely given object (i.e., different spiders
necessarily denote different objects) which is a member of its habitat. In Venn-Peirce
diagrams, shading a region means that the corresponding set is empty. Thus, when read
as a Venn-Peirce diagram, the diagram left contains the information that – due to the
shading – A−B is empty, and – due to the spider – there is an element in A−B, so the
diagram is contradictory. In SDs, the semantics for shading is slightly different from that
of Venn-Peirce diagrams: a region does not contain more elements than the elements
represented by some spiders. So the SDs reads as follows: there are two sets A and B,
the set A−B contains exactly one element, and the set B contains at least one element.

In the second diagram to the right, a third contour representing a set C is involved. This
diagram uses the notions of Euler circles: as the contour labeled C does not overlap with
the A and B-contours, C and A∪B are disjoint 6 . Moreover, there are three elements u,

5 A survey of Euler diagram-based reasoning systems and notations is given in [78], or in the introduction
of [77].
6 The usage of disjoint features in Euler circles has a drawback: not all abstract SDs are drawable (see

[79]).

6



v and w (represented by the three spiders) such that u, v ∈ A and w ∈ U − A. Further,
due to its shading, the set A−B must not contain any other elements than u and v, i.e.
it contains exactly two elements, and A ∩ B must not contain any other elements than
w, i.e., it contains no element or at most one element.

The above diagrams are unary SDs. They can be propositionally combined with the
logical operators u (‘and’) and t (‘or’). Below is an example of an SD which uses these
conjunctors is shown.

BA BA C
BA

D

In SDs, the spiders can be understood to correspond to existentially quantified objects.
Later in our presentation, a different kind of spider, which corresponds to universally
quantified objects in constraint diagrams, is introduced; this then allows one to speak
about existential and universal spiders. Nonetheless, since zones can be shaded, we can
express universal statements as well. In fact, Stapleton [77] has shown that SDs are equiv-
alent in expressive power to monadic FOL with equality, MFOLe 7 . Therefore the system
of SDs is semantically an extension of Shin’s Venn-II-system [66] which is equivalent
in expressive power to monadic FOL without equality. This feature is obtained by the
change of the semantics that includes the use of shading.

The Stapleton system of SDs [77] is equipped with a sound and complete calculus which
is a combination of five diagrammatic rules and of eight ’propositional logic style’-rules
that encompass the fact that unary diagrams can be assembled with the propositional
conjunctors u and t. Furthermore, Stapleton proved that the system is decidable 8 ,
which makes SDs attractive for application to DLs.

Finally, there have been attempts to develop automated theorem provers for SDs. Flower
in [32,33] investigates a heuristic approach to generating proofs in the SD system and
further in [34] presents a theorem proving tool: available from [84]. Moreover, a tableaux
system for SDs has also been implemented by Patrascoiu [56].

3.2. Constraint Diagrams

SDs only allow reasoning about sets, namely unary predicates, and provide no possibility
to represent or reason about any sort of relations. Moreover, as already mentioned, the

7 The proof is sketched as follows: in one direction, it is easy to assign to each diagram a corresponding
MFOLe-formula. The other direction is more challenging: first, to each MFOLe-formula, a finite set of

finite models which are prototypic for all models of the formula are assigned, and to each of these models

a unary SD is assigned.
8 It has to be emphasised that in the semantics for SDs (and CDs), in contrast to FOL, allows empty
models. For this reason, one cannot immediately transfer decidability results for fragments of FOL – like

the well-known Bernays-Schönfinkel-fragment of FOL – to SDs.
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spiders in SDs are ‘existential spiders’ as they can be read as existentially quantified
objects. On the other hand, constraint diagrams are an extension of SDs with universal
spiders (quantifiers) and arrows which represent binary relations (to be precise: the
arrow labels stand for binary relations, thus an arrow represents a property of the relation
denoted by its label). A full constraint notation was introduced by Kent [45] in an informal
manner. Since then, several papers attempt to elaborate a full mathematical treatment
of Kent’s vision, including syntax, semantics, and a sound and complete calculus for
constraint diagrams. Let us first depict a constraint diagram (taken from [77]):

Person Books

Libary

canBorrow

joined collection

*

Fig. 4. A Constraint Diagram

The core information expressed in this diagram is that “every person can only borrow
books that are in the collections of libraries they have joined”.

In Fish et al [29], the syntax and semantics of full constraint diagrams is developed but
a sound and complete calculus is elusive. The first ever constraint reasoning system (i.e.,
including a sound and complete calculus) was developed by Stapleton [77] but compared
to Kent’s approach it has several limitations. For example, universal spiders inhabit single
zones only, with at most one spider in any given zone (in Kent’s full system, universal
spiders are allowed to inhabit more than one zone, and a zone could contain more than
one universal spider), and each universal spider in a unitary diagram must be the source
of at least one arrow. In Kent’s full constraint diagram systems there are unlabeled
contours, termed derived contours. For example, the targets of the arrows labeled
with ‘canBorrow’ and ’collection’ in Figure 4 are derived contours. In Stapleton’s system,
there is at most one derived contour, which must be the target of at least one arrow.
Moreover, the inside of a derived contour is always shaded, and must therefore necessarily
represent the empty set.

In Stapleton’s constraint diagrams, the source of an arrow is an (existential or universal)
spider, and its target can either be an existential spider or a contour. Depending on the
source, we distinguish existential and universal arrows. As each universal spider is the
source of at least one arrow, in order to clarify the semantics of Stapleton’s constraint
diagrams, we have to make clear how arrows are read. As already stated however, the
label of an arrow denotes a binary relation on the universe U .

Let l be an existential arrow with source s (an existential spider) and target t (an exis-
tential spider or a contour). Let R be the relation represented by the label of l. Let S
be the object denoted by s and let T be the set denoted by t (for simplicity reasons we
agree that an existential spider denotes a singleton set). Then l stands for the condition
S.R = T . If l is an universal spider, the source now stands for the set denoted by the
contour of the spider’s habitat, i.e., if the habitat of l is the contour c which represents
the set C, then each element x ∈ C has to satisfy the condition x.R = T . In the semantics
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existential quantifiers take precedence over universal quantifiers (i.e., existential spiders
are read first). For example, we consider the following constraint diagram:

BA

*

r

t

C

s

The reading of the diagram is as follows:
compare to Fig. 3︷ ︸︸ ︷

C ∩ (A ∪B) = ∅∧

objects denoted by exist. spiders︷ ︸︸ ︷
∃u ∈ U − (A ∪B ∪ C).∃b ∈ B.∃c1, c2 ∈ C :

(c1 6= c2 ∧ uR = A ∧ c1S = b ∧ ∀x ∈ A−B : xT = {c2}︸ ︷︷ ︸
reading the arrows

)

Similar to SDs, Stapleton [77] developed a sound and complete calculus for constraint dia-
grams. It contains 25 rules, 22 are needed in the completeness proof (the other three rules
are useful shortcuts). In contrast however to SDs, there are unary constraint diagrams
which are not satisfiable. To compensate, Stapleton provided a compatibility relation on
the arrows that can be used to classify satisfiable constraint diagrams.

Finally, after discussing the syntax and semantics of CDs, we need to mention that Fish
et al [31,30] provide empirical studies on how human users read CDs.

After this brief introduction into SDs and CDs, we introduce in the next section the
system of existential and conceptual graphs.

4. Existential and Conceptual Graphs

In this section, we introduce Peirce’s existential graphs (EGs), Sowa’s conceptual graphs
(CGs), particularly its most common fragment of simple conceptual graphs (SCGs) and
the system of concept graphs with cuts (CGwCs) introduced by one of the authors.
Similar to spider and constraint diagrams, there exist mathematically precise elaborations
for each of these systems. Again, like spider and constraint diagrams, the diagrammatic
benefits of EGs or CGs (used in teaching) has been investigated by Schäfe [64] and also
by Pollant [83]. Furthemore, a theorem prover for existential graphs by developed by
Stewart [80].

4.1. Existential Graphs

Existential graphs [39] are a diagrammatic logic invented by C.S. Peirce (1839-1914)
in the last two decades of his life. Existential graphs are divided into three parts called
Alpha, Beta and Gamma. The three parts build on one another, Beta builds upon Alpha,
and Gamma builds on both Alpha and Beta. Alpha corresponds to propositional logic,
Beta corresponds to FOL (to be precise: first order logic with predicates and equality,
but without functions or constants). Gamma encompasses features of higher order logic,
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including modal logic, self-reference and more. In contrast to Alpha and Beta, Gamma
was never finished by Peirce, and even now, only fragments of Gamma (mainly the modal
logic part) are elaborated to contemporary mathematical standards. In this section, only
Alpha and Beta are introduced. For further readings we recommend Roberts [62], which
is the standard book on EGs and which describes in a more informal manner the complete
system; (see also Roberts [63]); Zeman’s formal elaboration in [89] (including a fragment
of Gamma); [67], a book where Shin provides her interpretation of Alpha and Beta which
focuses on its iconic features; [58], which is a tutorial of Peirce himself with commentary
by Sowa, or a short introduction by Sowa in [73]. A mathematical elaboration of Alpha
and Beta has been produced but is currently unpublished 9 .

We start with the description of Alpha. The EGs of Alpha consist only of predicate
names of arity zero, which are called medads, and of closed, doublepoint-free curves
which are called cuts (or sometimes seps) and used to negate the enclosed subgraph.
Medads can be considered as propositions. Propositions can be written down on an area
(the term Peirce uses instead of ‘writing’ is ‘scribing’ ), and writing down a proposition
is to assert it. 10 The area where the proposition is written or drawn (scribed) is what
Peirce called the sheet of assertion. It may be a sheet of paper, a blackboard or any
other surface. Scribing several propositions next to each other (this operation is called a
juxtaposition) asserts the truth of each proposition, i.e. the juxtaposition corresponds
to the conjunction of the juxtaposed propositions. For example, scribing the propositions
‘it rains’, ‘it is cold’ and ‘it is stormy’ next to each other yields the graph

it rains           it is cold it is stormy

which means ‘it rains, it is cold, and it is stormy’.

The location of the proposition on the sheet of assertion has no significance. Below,
another diagram with the same meaning is given.

it rains

it is stormy

it is cold

The possibility that an existential graph can have different representations is addressed
by Peirce at the beginning of [57], where he writes:

Convention No. Zero. Any feature of these diagrams that is not expressly or by previous
conventions of languages required by the conventions to have a given character may
be varied at will. This ”convention” is numbered zero, because it is understood in all
agreements.

To explain, the two diagrams above are different representations of the same graph. In
order to distinguish graphs from their diagrams, Peirce coined the term graph and graph
replica, i.e., the above diagrams are different graph replicas of the same graph. Similar

9 The reader is encourage to refer and correspond to Dau[23] for his forthcoming habilitation thesis on
this subject.
10An asserted proposition is called a judgement.

10



distinctions are made between types and tokens, known from philosophy, or abstract
and concrete syntax, used widely in Computer Science. As discussed in [43,21], for a
formally precise elaboration of any logic by means of diagrams, this distinction is vital.
This approach is adopted in this paper as well. After evaluating different diagrammatic
reasoning systems for using them for DLs, in Section 7, a fragment of Peirce’s graphs
is used as a diagrammatic system for the DL ALC. In this section, the syntax of this
fragment is defined on a abstract level which prescinds from the topological properties
of the diagrammatic representations.

So far, we have only seen how conjunction is expressed in the system of Peirce’s graphs.
Next, negating a graph is depicted by encirling it. The space within a cut is called its
close or area. For example, the graph

it rains

has the meaning ‘it is not true that it rains’, i.e. ‘it does not rain’. The graph

it rains           it is cold

has the meaning ‘it is not true that it rains and that it is cold’, i.e. ‘it does not rain or
it is not cold’. Cuts must not overlap, but they may be nested. The next graph has two
nested cuts.

it rains           it is cold

This graph has the meaning ‘it is not true that it rains and that it is not cold’, i.e. ‘if it
rains, then it is cold’. The device of two nested cuts is called a scroll. From the last
example we learn that a scroll can be read as an implication. A scroll with nothing on
its first area is called double cut (it corresponds to a double negation). As mentioned
before, the space within a cut is called the area of the cut. In the example above, we
therefore have three distinct areas: all the space outside the outer cut, i.e. the sheet of
assertion, the space between the outer and the inner cut, which is the area of the outer cut,
and the space inside the inner cut, which is the area of the inner cut. An area is oddly
enclosed if it is enclosed by an odd number of cuts, and it is evenly enclosed if it
is enclosed by an even number of cuts. As we have the possibility to express conjunction
and negation of propositions, we see that Alpha has the expressiveness of propositional
logic.

If we go from the Alpha part of EGs to the Beta part, predicate names of arbitrary arity
may be used, and a new symbol, the line of identity, is introduced. Lines of identity
are used to denote both the existence of objects and the identity between objects. Lines
of identity are attached to predicate names. Peirce drew them in bold. Consider the
following graph:

oncat mat21

This contains two lines of identity, hence it denotes two (not necessarily different) objects.
The first line of identity is attached to the unary predicate ‘cat’, hence the first object
denotes a cat. Analogously, the second line of identity denotes a mat. Both lines are
attached to the dyadic predicate ‘on’, i.e. the first object (the cat) stands in the relation
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‘on’ to the second object (the mat). The meaning of the graph is therefore ‘there is a cat
and a mat such that the cat is on the mat’, or in short: A cat is on a mat.

Consider the following graphs, where cuts are involved.

man man man

The meaning of the first graph is clear: it is ‘there is a man’. The second graph is built
from the first graph by drawing a cut around it, i.e. the first graph is denied. Hence
the meaning of the second graph is ‘it is not true that there is a man’, i.e. ‘there is no
man’. In the third graph, the heavily drawn line (it is not a line of identity, which will be
discussed shortly) begins on the sheet of assertion. Hence, the existence of the object is
asserted, not denied. For this reason the meaning of the third graph is ‘there is something
which is not a man’.

Peirce writes in 4.116 (we adopt the usual convention to refer to his collected papers
[39]), a “line of identity is [. . .] a heavy line with two ends and without other topical
singularity (such as a point of branching or a node), not in contact with any other sign
except at its extremities.” So lines of identity do not have any branching points, nor
are they are allowed to cross cuts. However, by connecting them at their endpoints, we
can obtain networks of lines of identity, which are termed ligatures. Peirce allows only
two or three lines of identity to be connected. If three lines of identity are connected,
the point where they meet is called a branching point. Moreover, lines of identity
are allowed where they connect directly on a cut. Due to this possibility, ligatures are
permitted which cross a cut.

Let us first consider the three EGs of Fig. 5.

male

African
human will dieman

cat
pet ownedby

lonely

21

Fig. 5. Four Peirce graphs with so-called single-object-ligatures

In the first graph, the ligature consists of three lines of identity, which meet in a branching
point, in the second graph, the ligature consists of two lines of identity meeting on the
cut, and the ligature in the third graph is composed of seven lines of identity. Nonetheless,
in all these graphs, a ligature can, similar to a line of identity, be understood to denote a
single object. The meaning of the graphs of Figure 5 ‘there exists a male, human african’,
‘there exists a man who will not die’, and ‘it is not true that there is a pet cat such that
it is not true that it is not lonely and owned by somebody’, i.e., ‘every pet cat is owned
by someone and is not lonely’.

Nonetheless, other examples show that this interpretation of ligatures is not so simple in
every case: namely a ligature may stand for more than one object. Let us consider the
three EGs of Figure 6. These graphs have the meanings ‘there are at least two suns’, ‘there
are (not necessarily distinct) objects which are blue, red, large and small, respectively’,
and ‘the blue and large or the red and small object are distinct’, and ‘there are objects
o1, o2, o3 with the properties S, P , and T resp, and these objects are not all identical’
(i.e., o1 = o2 = o3 does not hold). In every graphs, there is not a single ligature that can
be understood to denote a single object.
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is sun is sun
large
small

blue
red

S

TP

Fig. 6. Three Peirce graphs with non-single-object ligatures

In every graph in Figure 6 a part of a ligature traverses a cut (i.e., there is a cut c and a
heavily drawn line l which is part of the ligature such that both endpoints of l are placed
on c and the remainder of l is enclosed by c). Such a device denotes non-identity of the
endpoints of l (for example, Peirce writes (in 4.459) that “a sep [sep is another word Peirce
used for cut] which is vacant, except for a line of identity traversing it, expresses with
its contents the non-identity of the extremities of that line.”), thus a ligature containing
such a element l usually denotes different objects. But if such a element does not occur,
it can be shown that the ligature denotes a single object. For this reason, a ligature
L, such that no part of L traverses any cut, will be called single-object-ligature
(so-ligature).

A complete discussion existential graphs with non-single-object-ligatures goes beyond
the scope of this paper, see [22] for a more detailed discussion. It will turn out that the
ligatures we have to deal with in this paper are all single-object-ligatures, so we will not
run into problems caused by non-single-object-ligatures.

We now have all the necessary elements to express existential quantification, predicates
of arbitrary arities, conjunction and negation. As such we see that the Beta part of exis-
tential graphs corresponds to FOL (without object names and without function names).
Moreover, Peirce equipped EGs with a set of five sound and complete inference rules.

4.2. Conceptual Graphs

Sowa [70] developed CGs in the 1970s on the back of EGs (Sowa [71] provides an abbrevi-
ated overview). “Conceptual graphs are an extension of existential graphs with features
adopted from linguistics and AI” [73], and the purpose of the system is to express meaning
in a form that is “logically precise, humanly readable, and computationally tractable.”
The term ‘extension’ in the above is to be understood semantically, not syntactically:
Sowa adopted the ideas of EGs, but CGs have a different and richer syntax, “Besides
Peirce’s primitives, CGs provide a means of representing case relations, generalized quan-
tifiers, indexicals and other aspects of natural languages.” [73]. Another fundamental
aspect of CGs is that different kinds of referents exist, in particular names for objects.
Moreover, conceptual graphs may serve as referents themselves (which is similar to a
feature of Peirce’s Gamma EGs). This is called nesting in CGs. Both aspects will be
explained in the rest of this section.

In order to illustrate the broad range of CGs, we will provide several examples. The first
two follow:

* *onCAT: MAT: *onCAT: YoyoCAT: Yoyo MAT:

The meanings of these graphs are ‘a cat is on a mat’ and ‘the cat Yoyo is on a mat’
respectively. In each concept box, we have a type label t and a referent r. Sowa
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calls the boxes concepts, but in this paper the term concept box will be used to avoid
confusion with the use of the word concept in DLs. In the CG above, we have the types
CAT and MAT. The referents are ‘Yoyo’ and the generic marker ‘∗’. Type labels are
ordered in a sub-type-relation, according to their level of generality. For example, CAT is a
subtype of ANIMAL. An ordered set of types is often called support, type hierarchy,
taxonomy or even ontology. Type hierarchies usually contain a greatest type >, the
universal type, containing every object (of the respective universe of discourse) in
its extension. In the graph above, the two concept boxes contain two different kinds of
referents. The referent ‘Yoyo’ of the first box is a name for an object. The referent ‘∗’
of the second box is a fixed symbol which does not denote a particular individual, but
it denotes an individual which is not further specified. So the star ‘∗’ can be read as an
existential quantifier. It is called generic marker, hence the second box is called generic
concept box. The ovals are (conceptual) relations between the referents of the
concept boxes which are linked to the oval.

Sowa uses various kinds of referents. For example, the following graphs have the meanings
‘all men married a certain woman’ and ‘she is eating four bones’.

MAN: ∀
�
 �	WOMAN: @certainmarry FEMALE: #

�
 �	BONE: {∗}4eats

It is clear that these various kinds of referents go beyond the expressiveness of first order
logic. In particular they are not adapted from EGs because they use universal quantifiers
and numbered restriction. Moreover, even from the first example of this section (i.e., the
graph with the meaning ‘a cat is on a mat’) a crucial difference between existential graphs
and conceptual graphs is apparent. The lines of identity in EGs serve different purposes:
first, they are used for existential quantification, second, they are used to connect argu-
ments to relations, and third they are used to show identity between arguments. On the
other hand in CGs these functions are separated. Existential quantification is expressed
by generic concept boxes. The referents of concept boxes serve as arguments for relations,
and the connection between the arguments and the relations is drawn by relation ovals.
We need moreover to clarify how identity is expressed in CGs. For this, a new syntactical
element is used. In [71], Sowa says “Two concepts that refer to the same individual are
coreferent. [. . . ] are used to show that they are coreferent, i.e. concepts are connected
with a dotted line, called a coreference link.” This can be illustrated using the graph of
Fig. 7. This says that ‘Mary is a person and there is a teacher who is the same as Mary’,
or ‘Mary is a teacher’.

*PERSON: Mary TEACHER:

Fig. 7. conceptual graph for ‘Mary is a teacher’

The second fundamental difference between EGs and CGs is the nesting of CGs. When
graphs are nested, some CGs serve as referents in concept boxes of other CGs themselves.
In this manner, some CGs make statements and assertions about other CGs, i.e., the
system of CGs therefore offers the possibility of meta-level statements. Concept boxes
whose referents are CGs are called contexts 11 . Peirce’s sheet of assertion or the surface

11The term ‘context’ occurs in several meanings and implementations in logics, linguistics or artificial
intelligence. However, as Sowa says in [69]: “The notion of context is indispensable for any theory of
meaning, but no consensus has been reached about the formal treatment of context.” A treatment of

the various ideas of contexts is beyond the scope of this paper (refer to [69] or Chapter 5 of [76] for an
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where a CG is scribed can equally be understood as a context, the outermost context.

In Figure 8 we present a well-known example of a nested CG: It contains two contexts,
namely the concept boxes of type PROPOSITION and SITUATION (which are com-
mon types of contexts). The graph can be read as follows: ‘The person Tom believes a
proposition, which is described by a graph itself’. The proposition says that ‘the per-
son Mary wants a situation, which again is described by a graph’. In this situation we
have a concept box : * that is connected with a coreference link to the concept box
PERSON: Mary in the context above. So the situation is that ‘Mary marries a sailor’. The
formal understanding of the whole graph is now: ‘The person Tom believes the propo-
sition that the person Mary wants the situation that Mary marries a sailor’. In short:
‘Tom believes that Mary wants the situation in which she marries a sailor’, even more
succinctly: ‘Tom believes that Mary wants to marry a sailor’.

: *

SITUATION:
marry SAILOR: *

PERSON: Tom believe

PROPOSITION:

PERSON: Mary want

Fig. 8. A nested conceptual graph

Even negation is modeled with a specific context. As Sowa writes in [73]: “The EG
negative contexts are a special case of the CG contexts. They are represented by a
context of type Negation whose referent field contains a conceptual graph that states
the proposition which is negated.” Concept boxes of type NEGATION are introduced
by Sowa as abbreviations for contexts of type proposition with an unary relation ‘NEG’
attached (see Sowa [71], “Negation (NEG) is one of the most common relations attached
to contexts”), and Sowa often abbreviates these contexts by drawing a simple rectangle
with the mathematical negation symbol ¬ (see Sowa [75]).

Two examples for CGs with negations are presented in Figure 9. The left graph states
‘there are two suns, but it is not true that there is a thing which is identical to the two
suns’, i.e. ‘there are at least two suns’ (compare this to Figure 6). In the right graph,
the device of two nested negation contexts corresponds to scrolls in EGs and can be
understood as an implication. Hence, the meaning of the graph is ‘if a farmer owns a
donkey, then he beats it’.

* *: *Sun: Sun:
* *FARMER: own DONKEY:

: * beat : *

Fig. 9. Conceptual graphs with negation

introduction and discussion of contexts in CGs. Also recommended are the works of McCarthy [51], and

Barwise and Perry [7]).

15



There is presently no mathematical elaboration for the complete system of CGs [85,19].
Particularly troublesome is the handling of negation as specific contexts lead to several
problems [19]. In the following, we will first discuss the most prominent fragment of CGs,
namely simple conceptual graphs (SCGs). Then the system of conceptual graphs with
cuts (CGwCs) is described. Both systems are elaborated in a formally precise manner.

4.2.1. Simple Conceptual Graphs

The most prominent and best investigated fragment of CGs is the system of simple
conceptual graphs, SCGs. In this system, no contexts are allowed, so SCGs correspond
to the conjunctive, positive and existential fragment of FOL. This fragment is decidable,
nonetheless, a decision procedure to determine whether one SCG implies another is NP-
complete [14].

There are two different approaches to a mathematical elaboration of SCGs. In both
approaches, mathematical graphs are used to formalize SCGs. In the first, which follows
the work of Chein and Mugnier [14,15], bipartite labeled graphs are used: both concept
boxes and relation ovals are vertices in the graphs, and edges correspond to the lines
connecting concept boxes and relation nodes. The other approach follows Wille [86] where
concept boxes are modeled as vertices of a graph, whereas a relation oval, including all
lines from it to concept boxes, is modeled as a directed hyper-edge. In this case, labeled
directed multi-hypergraphs form the mathematical basis of SCGs. Nonetheless, both
formalizations can easily be translated to the other [44].

Chein and Mugnier provide a translation of SCGs to FOL as semantics for SCGs[14].
Moreover, the authors provide a sound and complete syntactical entailment relation
between SCGs based on graph homomorphisms, called projections. Briefly put, a SCG
G implies a SCG H iff there is a graph homomorphism f : H → G which respects
the underlying type hierarchy. In their first elaborations of projections [14], a further
restriction on G was considered: namely it had to be in normal form, i.e., no referent
was allowed to occur in distinct concept boxes. In Chein and Mugnier [16], this restriction
is dismissed by extended projection to so-called coref-projections which are graph-
homomorphisms that do not map vertices to vertices but rather maps sets of coreferent
vertices to sets of coreferent vertices.

In Dau [18], one of the authors provides an extensional semantics for SCGs based on
Wille’s formal concept analysis ([36]). Moreover, a sound and complete calculus, consist-
ing of fairly simple manipulations of the diagrams, is also provided. Thus, in both of
the popular mathematical elaborations of SCGs, a calculus is defined that is equivalent
to reasoning in a restricted form of FOL corresponding to the conjunctive, positive and
existential fragment of FOL.

4.2.2. Conceptual Graphs with Negation

As mentioned, employing negation in CGs, by means of introducing a special context,
yields problems. In order to overcome these difficulties, and to provide a mathematical
elaboration of that fragment of CGs which corresponds to full FOL, one of the authors
has extended in [19] the Wille-style formalization of SCGs by adding the cuts of Peirce’s
EGs. The resulting system is called the system of conceptual graphs with cuts
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(CGwCs). Similar to Peirce’s EGs, the cuts are in CGwCs are drawn as ovals, but in
order to distinguish them from the relation ovals, they are drawn in bold. Besides the
addition of cuts, the coreference-links in CGwCs are replaced by relation ovals, labeled
with the relation sign ‘=’. For example, the CGs of Fig. 9 can now be represented with
the additional of cuts as follows:

* *Sun: Sun:

* *FARMER: own DONKEY:

beat

Fig. 10. Conceptual graphs with negations

CGwCs are equipped with an extensional semantics, a sound and complete diagrammatic
calculus (based on the calculus for Peirce’s EGs), and meaning-preserving translation to
and from FOL. Particularly, they have the expressiveness of FOL, including equality and
constants, but absent are function names.

5. Spider or Constraint Diagrams for DL

At a first glance, there are some striking similarities between DL and the system of
SDs and CDs. Most importantly, both correspond to decidable fragments of FOL where
only unary predicates and binary relations are used. Both systems have sound and com-
plete calculi which are implemented on tableaux-based algorithms. It is therefore worth
investigating whether spider and constraint diagrams can be used as a diagrammatic
representation for DL.

In our scrutiny of SDs and CDs, we first restrict ourselves to a discussion of SDs only.
That is, on the DL side, we consider class constructors where only concepts, but no roles
are used. This is an unreasonable restriction for DLs, but it serves well to identify some
early differences between SDs and DL and test their compatability.

Firstly, an obvious difference between DL and SDs is that DLs are used to express
concepts, which can be translated into FOL-formulas with one free variable, whereas
SDs are translated into sentences, i.e. FOL-formulas without free variables. So we have
to extend the syntax and semantics of SDs slightly to accommodate this. This could be
done by labeling spiders with variables. Let us consider a conjunction of two concepts A
and B, i.e. A u B, as a very simple example for a class constructor. With a SD, we can
express the formula ∃x.(A(x) ∧ B(x)). The variable x will be replaced by a spider. By
labeling the corresponding spider with x, we provide a simple SD-like representation for
the formula A(x) ∧B(x), where x is now free.

A uB

A B A B

x
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A more complex example is the concept description A u (B tC). Again, we can express
∃x.(A(x)∧(B(x)∨C(x)) with a SD. Each formula in propositional logic can be converted
into its disjunctive normal form, where in each of the conjuncts, all concepts of the formula
appear as literals. For example, instead of Au(BtC), we consider the equivalent formula
(AuBu¬C)t (AuBuC)t (A¬uBuC). As each conjunct corresponds to one minimal
region in the diagram, we therefore have the opportunity to express each concept by
means of a single spider in SDs. Similar to the last example, we provide the concept
description, the SD and the corresponding DL-SD, including a free variable x.

A u (B t C)

A B

C

A B

C

x

The purpose of SDs is to express relationships between predicates, not to express the
construction of new predicates from those given. For example, we can express the dis-
jointness of two predicates A and B by either using a shading in the corresponding
Venn-diagram, or by using the features of Euler circles. Both possibilities are presented
below.

BA A B

Atomar DL-concepts are represented in SDs by contours. The Euler-features of SDs can
be used to represent entailment or disjointness of the atomar DL-concepts represented
by contours. A definition of a single DL-concept does not express such set-theoretical
relationships. Thus if we model a single DL-concept by means of SDs, we cannot draw
benefit from the Euler-features of SDs: We need only the Venn-diagram part of SDs
without shadings. On the other hand, it is possible to express relationships between sets
in DL-knowledge-bases: The axiom ⊥ ≡ A uB expresses that A and B are disjoint, and
A v B expresses that A is a subset of B. That is, when we attempt to diagrammatically
represent a single DL-concept of a set of DL-concepts and DL-axioms, some of the axioms
can incorporated in the diagram, expressed by means of Euler-features or shadings. An
example for this is given below.

In any event, the contours of mutually independent atomar DL-concepts give rise to a
Venn-diagram. It is possible to draw Venn-diagrams for an arbitrary number of predi-
cates, but if more than three predicates are used, the diagrams become difficult to read.
Below is an example of a concept definition where four concepts are involved, and the
corresponding SD-diagram. A more complex example will be given below.
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A u (B t (C uD))

A B

C
D

x

Besides the disadvantage that Venn-diagrams with more than three predicates are hard
to read, SDs present a possible diagrammatic representation for DL when no roles are
used. In the following, roles are taken into account.

Let us consider two very simple concept description with a role involved: A u ∃R.B
and A u ∀R.B. For the first concept, it seems self-suggesting to use an existential arrow
to express the ∃R.B-part of this description. Similarly, for the second concept, using a
universal spider seems appropiate. Therefore, the following CDs seem to be the canonical
CD-style representation of the concept descriptions:

A u ∃R.B

A B

x
R

A u ∀R.B

A B

x
R * *

Fig. 11. A first, failed attempt to express DL-restrictions

However the semantics of these CDs with a free variable and the intended DL-semantics
of the concept description differ.

Left Diagram Right Diagram

SD-semantics {x | x ∈ A ∧ ∃b ∈ B : xRI = {b}} {x | x ∈ A ∧ ∀b ∈ B : xRI = {b}}

DL-semantics {x | x ∈ A ∧ ∃b ∈ xRI : x ∈ B} {x | x ∈ A ∧ ∀b ∈ xRI : x ∈ B}

= {x | x ∈ A ∧ xRI ∩B 6= ∅} = {x | x ∈ A ∧ xRI ⊆ B}

We see that arrows having existential spiders as targets are not suited to express the
‘exists restriction’ constructor of DLs, and similarly, arrows having universal spiders as
targets are not suited to express the ‘value restriction’ constructor of DLs. Moreover,
note that the right diagram is not a well-formed diagram according to CDs as defined by
Stapleton [77] – because the universal spider inhabits not a single zone, and the universal
spider is not the source (but the target) of an arrow. On the other hand, both diagrams
are well-formed CDs according to the full CD system developed by Fish et al. [29] (but
recall that Fish et al. [29] do not provide a calculus for the full system).

In the CDs of Fish et al. [29], we have arbitrary many derived contours. Derived contours
are basically unlabeled contours which are targets of arrows. An arrow represents a
relation, so a target of arrows denotes the range of this relation. Thus derived contours
provide a means to express how the range of a relation is set-theoretically related to
other sets. In fact, instead of spiders, derived contours are the right entities to express
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the ‘exists restriction’ and ‘value restriction’ constructors of DLs. Let us consider the two
DL-concepts again. The concept A is of course expressed by

A B

x

For the first concept, i.e. A u ∃R.B, we have to add a derived contour to this diagram,
being the target of an arrow labeled with R. We do not know any subset-relationships
between xRI and A or B, so the diagram we obtain is similar to a Venn-diagram with
three sets. However we know that the intersection of xRI and B is not empty, so we
add an additional existential spider to the region that depicts xRI ∩ B. For the second
concept, i.e. Au∀R.B, we have again to add a derived contour to this diagram. Now this
contour has to express that xRI ⊆ B holds. We can use the Euler-features of CDs to
express this. In Figure 12 the two CDs that express the two DL-concepts are depicted.

A u ∃R.B

A B
x

R A u ∀R.B

A B

R

x

Fig. 12. Expressing DL-restrictions with constraint diagrams

There remains a slight flaw in the CD with the exists restriction: in the system of CDs
distinct spiders denote distinct objects so this diagram is not an appropiate translation
of the exists restriction with CDs. In [37], the notation of strands has been introduced:
In the diagrams, strands are wavy lines between different spiders, and they are used to
indicate that these spiders do not necessarily denote different objects. So we could add
a strand to our diagram. Despite such repair, strands are not considered in [29], where
the syntax and semantics of full CDs is developed. Another possibility is to slightly alter
the semantics of [29] by dismissing the condition that different spiders denote different
objects. Let us assume this approach in the following.

With the discussion so far, we can now provide a CD that corresponds to the DL concept
HappyMan of equation (1). First of all, this concept contains five atomic concepts,
namely Man, Female, Male, Rich, and Happy. The definition of HappyMan does
not provide information on how these concepts are related, so a CD which corresponds
to equation (1) is based on a Venn-Diagram with five contours. The diagram to the left
of Figure 13 is such a diagram. As mentioned earlier, Venn-diagrams with more than
three contours become difficult to read. To make the example easier to comprehend,
let us assume that besides the definition of HappyMan, we have moreover DL-axioms
⊥ ≡ Male u Female and Man v Male. Then we can start with a more simpler
Euler-diagram, as depicted right in Figure 13.
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The CD corresponding to HappyMan will be based on the right diagram. To make this
CD more comprehensible, it will be build inductively. The next two diagrams in Figure 14
depict the DL concepts Man and Man u ∀hasChild.(Rich tHappy), respectively.

Note that in the second step, we had to add a derived contour, so we split some spiders
as well. This contour depicts in an iconic, Euler-style way, that we have xRI ⊆ B for
each x in the concept extension. On the other hand, we already have six contours, which
are not easy to comprehend. In the next two steps, which are depicted in Figure 15, we
add the conjuncts ∃hasChild.Female and ∃hasChild.Male to the concept definition.

In each step, another derived contour is added to the diagram. In contrast to the second
step, these new contours depict sets that have a set-theoretical relationship to the other
sets: we have to add the contours in a way that they separate each minimal region into
two parts. This yields a diagram which unfortunately lacks readability.

We haven’t disussed a complete translation of DL-concepts into CDs, but it seems there
is some prospect that a general translation can be provided. However, we have to deal
with the following problems: first, we have slightly altered the semantics of CDs by
dismissing the condition that different spiders denote different objects. Second, neither for
the system of CDs with the original semantics, nor for our system with the slightly altered
semantics, do a sound and complete calculus exists. Finally, as the previous example
shows, each atomic concept and each (value or exists) restriction in DL-concepts needs
a contour in the corresponding CD which quickly yields CDs that, by any reasonable
measure, are less readable than the orginating DL-concepts.

6. Conceptual or Existential Graphs for DL

Both CGs and DLs have some common background: they are both developed and in-
tended as knowledge representation systems to include reasoning facilities, they were de-
veloped at nearly the same time and they have an important common ancestor, namely
the semantic networks of AI (and Minski’s frame systems). In fact, in 1979, the well-
known system Kl-One was developed on the basis of informal use of semantic networks
in AI (see [10,11]). Kl-One was itself a diagrammatic formalism and in 1987 a well-
defined, extensional, Tarski-style semantics was developed for it. Thus, in contrast to
semantic networks, the diagrammatic entities in Kl-One were equipped with precise
meaning. This was the starting point for the first DL [49].

Thanks to this common background, there had been several attempts to identify how
and where DL and CGs were related: namely specifying where DLs are related to cor-
responding fragments of CGs. Coupey and Faron [17] focus on SCGs where a rather
restricted DL, namely a restricted version of ALEOI, is considered. In this case only the
following class constructors are considered: inverse roles (i.e., R−), a restricted version of
conjunction (C1 uC2), and existential restriction (∃R.C). It is argued that nominals can
easily be added. More importantly, due to the lack of negation in SCGs, the authors can-
not express the negation of concepts ¬C, disjunction C1 tC2, or value restriction ∀R.C.
Baader et al.[3] extend the results of Coupey and Faron by allowing the existential in-
tersection of concept descriptions, intersection of roles and unary ‘one-of’ concepts, i.e.
they determine a fragment of conceptual graphs that corresponds to the DL ELIRO1.
Again, due to the lack of negation, this DL is not propositionally closed.
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Man

Female

Male

Happy

Rich

Male Female
Man

Rich

Happy

Fig. 13. A Venn Diagram and an Euler Diagram for the Atomar Concepts of HappyMan

x

Male
Man

Female

Rich

Happy

x

Male
Man

hasChild

Female

Rich

Happy

Fig. 14. CDs for Man and Man u ∀hasChild.(Rich tHappy)

x

Female

hasChild
Man

Male

hasChild

Rich

Happy

x

hasChild hasChild
Female

hasChild
Man

Male

Happy

Rich

Fig. 15. CDs for Man u ∃hasChild.Female u ∀hasChild.(Rich tHappy) and HappyMan
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As well similarities between DL and CGs, there are important differences. Firstly, similar
to SDs and CGs, all graphs (i.e., both CGs and EGs) correspond to closed FOL formulas.
Next, in the graphs, relations of arbitrary arities are allowed. There is no correspondence
to the type-hierarchy of CGs in DL. Finally, the syntactical possibilities of the graphs,
including identity, graphs that contain circles, graphs that are not connected etc, allow
graphs to be constructed that do not have counterparts in DL. However, our intention
with this paper is not to explore direct correspondences between graphs and DL, but
rather using the graphs as a diagrammatic version of DL. Therefore we are free to dismiss
the features of CGs not needed (for example, it is reasonable to consider only graphs
where binary relations are allowed and where we have only a flat type hierarchy). On the
other hand, the lack of free variables in the graphs is a absent feature which we need for
DLs. As such, a first task is to discuss how free variables can be added to graphs.

Adding free variables to graphs is relatively straight forward. For existential graphs,
Burch [13] focuses on an algebraic elaboration of EGs. Inspired by Burch, we find other
approaches in the works of Pollandt [59,60], Wille [87], Hereth-Correia and Pöschel
[40,41], and Hereth-Correia and Dau [27]. 12 The resulting graphs are usually called
relation graphs (RG), as they describe relations instead of propositions 13 .

The diagrammatic rendering of free variables is via numbered question markers. In Fig-
ure 16 a relation graph, and the corresponding CGwC with free variables, are depicted.
Both graphs have two query markers ?1, ?2, and thus they describe the relation of all
pairs of objects (o1, o2) such that, if ?1 and ?2 are replaced by o1 and o2 respectively we
obtain a valid graph. So the graphs describe the binary relation is stepmother of.

married_with 2 male:* father_of : ?2

21 mother_ofmother_of1 2

malefemale
1

1
2 1

1
married_with father_of 2?1 ?2 1female: ?1 1 2

Fig. 16. An relation graph and the CGwCs with free variables

In the following, we focus on the logic ALC, i.e. the DL which encompasses inverse
roles, conjunction, disjunction, negation, value restriction and exists restriction. The
main reason for this choice is that ALC is the smallest propositionally closed DL ALC.
As we go for a propositionally closed DL, we do not consider SCGs, but only RGs and
CGwCs.

Considering other DL-constructs is the subject of further research. As briefly discussed
in the outlook, first unary ‘one-of’ concepts, inverse roles, and the intersection of roles
will be targeted, as is it likely that adding these constructs will not be too problematic.
Once this is done, we obtain a strict extension of the the results of [17,3].

We consider again the DL-concept of equation (1) as an example. First, it should be noted
that in the graph-based systems of RGs and CGwCs we have no genuine opportunity
to express disjunction or universal quantification. However this does not present any
difficulty since both can be alternatively expressed by means of conjunction, negation,
and existential quantification (the basic operators in RGs and CGwCs). On the DL side,

12Another source is the appendix of [23], where the calculus of EGs is extended to a a sound and
complete calculus for RGs.
13For CGwCs, free variables have been added to them in [20].
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C1 t C2 can be replaced by ¬(¬C1 u ¬C2), and ∀R.C can be replaced by ¬∃R.¬C.
Therefore, we consider the equivalent formula,

Man u ∃hasChild.Female u ∃hasChild.Male u ¬∃hasChild.(¬Rich u ¬Happy)

and provide “naive” translations of it to CGwCs and an RG.

Baader et al. [3] consider SCGs that have one distinguished node termed root. We
adopt this idea by providing CGwCs where a distinguished concept box : ? , placed on
the sheet of assertion, is used to describe the concept description (note that as concept
descriptions of DL correspond to FOL-formulas with only one free variable, there is no
need to use numbered question markers).

There are two possibilities to transform this concept description into a CGwC. On the
one hand, we can translate the atomic concepts of DL to types in CGwCs, i.e. they appear
in concept boxes. On the other hand, we can both translate atomic concepts and roles
to relations in CGwCs, i.e. roles appear in relation ovals. The CGwCs corresponding to
the given concept description are depicted in Figure 17.

: ?

: *Female

: *Man

hasChild1 2

hasChild1 2 : *

: *Rich

: *Happy

: *hasChild1 2

Male

: ?

hasChild1 2

hasChild1 2

: *hasChild1 2

: *

: * Female

Male

Man

Happy

Rich

Fig. 17. Concept descriptions as CGwCs, left with atomic classes as types, right with atomic classes as

unary relations

Note that for the left graph of Figure 17, we need a generic marker for each concept of
the concept description, as well as for each subformula ∃R.C or ∀R.C, where C is not
an atomic concept. In the graph to the right, we need a generic marker for each role of
the concept description, which now appears in concept boxes : * . In the graph left,
we need additional identity links 14 .

Next in Figure 18 an RG for the concept description is depicted. In EGs and RGs both
existential quantification and the identity of objects is modeled with ligatures. We can
rid ourselves of identity links in CGwCs (see left example in Figure 17) and concept
boxes : * (see right example in Figure 17) .
These graphs give rise to the following conclusions: first, it is possible to provide fragments
of CGwCs or RGs which correspond to ALC. Second, as both identity links and concept
boxes : * are encompassed by lines of identity in RGs, the RG is easier to comprehend
than the two CGwCs.

Compared to SDs and CDs we see a more natural translation from ALC-concepts to
existential graphs than to CDs. Moreover, for RGs, there exists a sound and complete

14A short discussion on the need for identity links in translating DLs to CGs is provided in [17].
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Female

Male

Man?

Rich

Happy
hasChild1 2

hasChild1 2

hasChild1 2

Fig. 18. Concept description as EG

calculus, whereas such a calculus is absent for CDs. Although CDs might still be elab-
orated as a diagrammatic reasoning system for ALCthe discussion of the last sections
leads to the conlusion that RGs seem the most promising system to formalize the DL
ALC as a diagrammatic reasoning system. For this reason, in the next sections we will
determine a fragment of RGs corresponding to ALC.

7. A Tree-based Formalization of The Description Logic ALC

In this section, the syntax and semantics for the DL ALC is provided. First of all, as
mentioned earlier in Section 2, the DL ALC has conjunction, negation and value restric-
tion as constructors. As the RGs of Peirce have conjunction, negation and existential
quantification as constituents, we can consider ALC made up from conjunction, negation
and existential restriction (instead of value restriction).

Let RGALC denote the class of RGs that will be used to formalize ALC. The graphs of
RGALC will be called ALC-graphs. The class RGALC is a subclass of all RGs and the
graphs of RGALC exhibit significant additional constraints. First, for a graph in RGALC ,
only unary predicates and binary relations are used. The graph has exactly one pending
edge labeled with ‘?’ and this is placed on the sheet of assertion. Moreover, each cut is
crossed exactly once by a heavily drawn line (particularly, we must have no empty cuts).
Most importantly, the underlying graph structure without the cuts is a tree. The existing
formalizations of the full system of RGs have to capture more complex structures. For the
purpose of this paper, these formalizations are technically overloaded, thus we provide a
new formalization by means of labeled trees. Using trees is, on the one hand, close to the
usual approach to inductively define the formulas of ALC. On the other hand, we can
easily provide for each tree the corresponding RG-diagrams (which will be done in the
next section), and labeled trees are better suited than formulas when we finally employ
a Peirce-style calulus for ALC.
Trees can be formalized either as rooted and acyclic graphs or as special posets. We adopt
the second approach, i.e., a tree is a poset (T,≥), where s ≥ t can be understood as ‘s is
an ancestor of t’. A labelled tree is a structure T := (T,≤, ν), where (T,≤) is a tree
and ν : T → L is a mapping from the set of nodes to some set L of labels. The greatest
element of T is the root of the tree. As usual, each node v gives rise to a subtree Tv

(formally, Tv = (Tv,≥
∣∣
Tv×Tv

, ν|Tv
) with Tv := {w ∈ T | v ≥ w}). We write T′ ⊆ T, if

T′ is a subtree of T. Isomorphic labeled trees are implicitly identified.

Next, we introduce operations to inductively construct labelleled trees. These operations
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will be used to define the syntax of ALC. We assume to have a set L of labels.

Chain: Let l1, . . . , ln ∈ L. With l1 l2 . . . ln we denote the labelled tree T := (T,≥, ν)
with T := {v1, . . . , vn}, v1 > v2 > . . . > vn and ν(v1) = l1, . . . , ν(vn) = ln. That is,
l1 l2 . . . ln denotes a chain, where the nodes are labelled with l1, l2, . . . , ln, respectively.
We extent this notation by allowing the last element to be a tree: If l1 l2 . . . ln ∈ L and
if T′ is a labeled tree, then l1 l2 . . . lnT′ denotes the labeled tree T := (T,≥, ν) with
T := T ′ ∪ {v1, . . . , vn}, v1 > v2 > . . . > vn and vi > v for each i = 1, . . . , n and v ∈ T ′,
and ν := ν′ ∪ {(v1, l1), . . . , (vn, ln)}., i.e,, T is obtained by placing the chain l1 l2 . . . ln
above T′.

Substitution: Let T1,T2 be labelled trees and S := (S,≥s, νs) a subtree of T1. Then
T := T1[T2 /S ] or T1

[
S
T2

]
denotes the labelled tree obtained from T1 when S is

substituted by T2. Formally, we define T := (T,≥, ν) where we set T := (T1 − S) ∪ T2,
≥:=≥1

∣∣
T1−S

∪ ≥2 ∪{(w1, w2) | w1 > v, w1 ∈ T1−S, w2 ∈ T2}, and ν := ν1

∣∣
(T1−S)

∪ν2.

Composition: Let l ∈ L be a label and T1,T2 be labelled trees. Then l(T1,T2) denotes
the labelled tree T := (T,≥, ν) , where we have T := T1 ∪ T2 ∪ {v} for a fresh node v,
≥:=≥1 ∪ ≥2 ∪({v}× (T1 ∪ T2)), and ν := ν1 ∪ ν2 ∪ {(v, l)}. That is, T is the tree having
a root labelled with l and which has T1 and T2 as (direct) subtrees.

Strictly speaking, in the above operations we have sometimes to consider trees with
disjoint sets of nodes (for example, we have to assume in T1[T2 /S ] that T1 and T2 are
disjoint). As we consider trees only up to isomorphism, this can always easily be achieved
and is usually not explicitely mentioned.

Before the syntax and semantics of ALCbased on labeled trees is introduced, let us more
clearly define the vocabulary we will use. As we focus on ALC we only need to consider
atomic concepts and atomic roles but no individuals. Therefore a vocabulary is defined
to be a pair (A,R) where A is a set of (atomic) concepts and R is a set (atomic)
roles. We also assume to have a top-concept > ∈ A. In an interpretation (∆I , I), the
interpretation function I assigns to every atomic concept A ∈ A a set AI ⊆ ∆I and to
every atomic role R ∈ R a binary relation RI ⊆ ∆I ×∆I , and we have I(>) = ∆I .

Now the tree-based syntax and semantics of ALCis defined. To distinguish this syntax
from the usual notation of ALC by means of formulas, this system is called ALCTree.

Definition 7.1 (Syntax and Semantics of ALCT ree) Let (A,R) be a vocabulary,
where A is a set of atomic concept names and where R is a set of atomic role names. We
assume we have a further atomic name >. Moreover, let ‘u’ and ‘¬’ be two further signs,
denoting conjunction and negation. Let (∆I , I) be a interpretation for the vocabulary
(A,R). We inductively define the elements of ALCTree as labeled trees T := (T,≥, ν),
as well as the interpretation I(T) of T in (∆I , I) .

Atomic Tree for >: The labeled tree > := (v,>) is in ALCTree. We set I(T) = ∆I .

Atomic Tree for A: If A is an atomic concept, then the tree TA := (v,A) is in
ALCTree. We set I(T) = AI .

Negation: Let T ∈ ALCTree, let v be a fresh vertex. Then T′ := ¬T := ¬T is in
ALCTree. We set I(T′) = ∆I − I(T).

Conjunction: Let T1,T2 ∈ ALCTree. Then the tree T := (T1 uT2) := u(T1,T2) is in
ALCTree. We set I(T) = I(T1) ∩ I(T2).
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Exists Restriction: Let T ∈ ALCTree, let R be a role name. Then T′ := RT := RT
is in ALCTree. We set I(T′) = {x ∈ ∆I | ∃y ∈ ∆I : xRIy ∧ y ∈ I(T)}.
The labeled trees of ALCTree are called ALC-trees.

Let T := (T,≥, ν) ∈ ALCTree. An element v ∈ T respectively the corresponding subtree
Tv is said to be evenly enclosed, iff |{w ∈ T | w > v and ν(w) = ¬}| is even. The
notation to be oddly enclosed is defined accordingly.

Of course, ALC-trees correspond to the formulas of ALC, as they are defined in the usual
linear fashion. For this reason, we will sometimes mix the notation of ALC-formulas and
ALC-trees. Particularly, we sometimes write T1 u T2 instead of u(T1,T2). Moreover,
the conjunction of trees can be extended to an arbitrary number of conjuncts, i.e. if
T1, . . . ,Tn are ALC-trees, we are free to write T1 u . . . uTn. We agree that for n = 0,
we set T1 u . . . uTn := >.

Now we define semantic entailment between ALC-trees.
Definition 7.2 (Semantical Entailment) Let {Ti | i ∈ I} be a set of ALC-Trees and
let T be an ALC-Tree. We set

{Ti | i ∈ I} |= T :⇐⇒
⋂
i∈I

I(Ti) ⊆ I(T) for each interpretation (∆I , I)

For I = ∅, we set
⋂

i∈I I(Ti) := ∆I for the respective model, and write |= T. For |I| = 1,
we write T′ |= T.

8. A Diagrammatic Representation for ALCT ree

In Section 4.1, we briefly discussed that C.S. Peirce distinguished between graphs and
graph replicas. As it is is more generally argued in [43,21], any formalization of logic by
means of diagrams has to distinguish these two levels, usually called types or abstract
syntax (which correspond to Peirce’s graphs), and tokens or concrete syntax (correspond-
ing to (Peirce’s replicas). The ALC-trees, as they have been defined in the last section,
are obviously the abstract syntax. In this section we explain how each ALC-tree can
be diagrammatically represented in the style of Peirce’s graphs, i.e., the token-level is
introduced.

First, we will use the letter G, sometimes with indices, to denote the graphs (i.e., dia-
grams) of RGALC . As stated in the last section we will only consider RGs that have a
single query marker placed on the sheet of assertion, i.e. there will be one heavily drawn
line on the sheet of assertion with a “?” attached to it. We will call this the pending
edge of the graph. In order to emphasize this pending edge of a graph G we will often
represent it in the following manner: ? G.

To eachALC-tree T, we now assign corresponding relation graph diagrams Ψ(T) with one
query marker. Let A be an atomic concept, R be a role name, let T, T1, T2 be ALC-trees
where we already have defined Ψ(T) = ? G , Ψ(T1) = G? 1

, and Ψ(T2) = G? 2,
respectively. Now Ψ is defined inductively as follows:
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Ψ(>) := ? Ψ(A) := ? A

Ψ(T1 uT2) :=
G2

G1? Ψ(¬T) := ? G

Ψ(RT) := R? G

In the following, the term ‘ALC-graph’ will be used to denote the diagrammatic, Peirce-
style representation of ALC-trees, i.e. with ‘ALC-tree’ we refer to the type-level and with
‘ALC-graph’ we refer to the token-level.

In this definition we implicitly used diagrammatic conventions to denote some operations
on RGs. For example, in the 3rd step (corresponding to conjunction), the pending edges
of ? G1 and ? G2 have been joined in a newly generated branching point; and
in the 4th step, the pending edge of ? G is extended outwards through the newly
generated cut. According to Peirce’s convention No. Zero, we may vary certain features
of the diagram, like the shape of the cut or the arrangement of the entities on the plane.
Considering ourALC-formula example given in the introduction, the correspondingALC-
tree (the type), and two corresponding Peircean diagrams (two tokens), are provided in
Figure 19. Finally, in the full system of RGs, we need to label the edges adjacent to a
relation name R with numbers indicating the order of the arguments of R. As the RGs
of RGALC have a tree-like structure, we can ommit this labeling.

Man u ∃hasChild.Female u ∃hasChild.Male u ∀hasChild.(Rich tHappy)

Man

Male
hasChild Female

hasChild

RichHappy

hasChild

Female

Male

Man?

Rich

Happy
hasChild

hasChild

hasChild

HappyRich

hasChildMan hasChild

Female

hasChild

Male

?

Fig. 19. An ALC-formula, the corresponding ALC-tree, and two diagrams of Peirce graphs.

We have to this point provided a translation of ALC-trees into diagrams of Peirce’s
graphs. If we have on the other hand a graph ? G, the first diagrammatic entity we
reach from the question mark is either (if non-empty) an atomic concept, an atomic role,
a branching point, or a cut, and from this entity we see the last step in the construction
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of the ALC-tree that corresponds to the diagram 15 . Therefore, for any given diagram of
RGALCwe can reconstruct the corresponding ALC-tree with ambiguity.

We have established a one-to-one correspondence between ALC-trees and their diagram-
matic representations in the form of graphs of RGALC . The rules of the forthcoming
calculus can be best understood to be carried out on the diagrammatic representations.
Further, the ongoing formal proofs with ALC-trees will be depicted this way.

9. The Calculus for ALCT ree

C.S. Peirce provided a set of five rules for the system of existential graphs termed erasure,
insertion, iteration, deiteration, double cut. It is possible to elaborate Peirce’s graphical
calculus, including a proof of its soundness and completeness, in a mathematical precise
manner, and to extend the calculus for the system of RGs, but this goes beyond the
scope of this paper.

RGALC is a fragment of the full system of RGs. As one would expect, the rules for RGs are
also sound rules for RGALC . However it is not clear whether these rules are also complete.
For two graphs G1, G2 ∈ RGALC with G1 |= G2, we have a proof for G1 ` G2 within the
full system of RGs, i.e., a sequence of graphs starting with G1, ending with G2, where
each graph in the sequence is derived from its predecessor by one of Peirce’s five rules.
Despite this it might happen that we do not have a proof that consists only of graphs of
RGALC . In fact, in the calculus we provide, we require more rules. Besides some trivial
rules, like rules which capture the associativity of conjunction, we need special rules for
handling roles. The rules iteration of roles into even and deiteration of roles from odd
(see below) are the most important examples of this.

Next, the Peirce style rules for ALCTree are provided. These rules transform a given
ALC-tree into a new ALC-tree. In order to make the calculus more understandable,
examples and diagrams that illustrate the operation of the rules are provide within their
definitions. For each rule name, we provide an abbreviation that will subsequently be
used in the proofs.

Definition 9.1 The calculus for ALC-Trees over a given vocabulary (A,R) consists of
the following rules:

Addition and Removal of > (>-add. and >-rem.): Let T := (T,≥, ν) be an
ALC-tree, let S ⊆ T be a subtree.

For T′ := T
[

S
u(S,>))

]
we set T a` T′ .

(T a` T′ abbreviates T ` T′ and T′ ` T). We say that T′ is derived from T by adding
a >-node, and T is derived from T′ by removing a >-node. For the ALC-graphs,

15 In fact each ALC-tree, in turn each graph of RGALC , has a unique derivational history. This is a

common feature of linear and symbolic notations of logic. However, for inductively defined diagrammatic
versions of logic, this feature is often absent. Having a unique derivational history provides a unique

reading of a formula but diagrams often provide multiple readings, namely a given diagram can be read
in different although semantically equivalent ways ([67]). The point is that in diagrammatic systems it
is not necessarily desirable to provide a unique derivational history, see [21,67] for a deeper discussion

on this issue.
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this rule corresponds to adding a branch to a heavily drawn line, or removing it. A simple
example is given below.

? R C
>-add

` ? R C
>-rem

` ? R C

These rules are ”technical ’helper’ rules that will be often combined with other rules that
add or remove subtrees. Examples will be given below.

Addition and Removal of Roles (R-add. and R-rem.): Let T be an ALC-tree
having > as a subtree. Let R be a role name.

For T
[

>
¬R¬>

]
we set T a` T′ .

We say that T′ is derived from T by adding the role R, and T is derived from T′ by
removing the role R. A simple example for this rule with ALC-graphs is given below.
Due to the symmetry of the rules, the inverse direction of this proof is a proof as well.

? C >-add

`
? C R-add

`
? C

R

Associativity of Conjunction (conj.): Let T be an ALC-tree let S1 u (S2 uS3) ⊆ T
be a subtree.

For T′ := T
[
S1 u (S2 u S3)
(S1 u S2) u S3

]
we set T a` T′ .

We say that T′ is derived from T resp. T is derived from T′ by using the associativity
of conjunction.

Addition and Removal of a Double Negation (dn): Let T := (T,≥, ν) be an
ALC-tree, let S ⊆ T be a subtree.

For T′ := T
[

S
¬¬S

]
we set T a` T′ .

We say that T′ is derived from T by adding a double negation and T is derived
from T′ by removing a double negation.

To see an example, consider the four ALC-graphs below. The second and third graph
can be derived from the first by adding a double negation. The opposite direction can be
applied symmetrically. The fourth graph is a result of adding a double negation in the
general theory of RGs, but in the system of ALC-trees, this is even not a diagram of of
an ALC-tree, as the cuts cross more than one heavily drawn line.

? C
D

? C

D

?
D
C ?

D
C

Erasure from even, Insertion into odd (era. and ins.): Let T := be an ALC-tree
with a positively enclosed subtree S ⊆ T.

For T′ := T[> /S ] we set T ` T′ .

We say that T′ is derived from T by erasing S from even. In the opposite direction,
let T = be an ALC-tree with an negatively enclosed subtree > ⊆ T. Let S ∈ ALCTree.

For T′ := T[S /> ] we set T ` T′ .
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We say that T′ is derived from T by inserting S into odd.

This is another set of rules that often go together with the addition and removal of >.
Examples will be given later.

Iteration and Deiteration (it. and deit.): Let T := (T,≥, ν) be an ALC-tree with
with a subtree S := (S,≥S , νS) ⊆ T. Let s be the root of S, let t be the parent node of s
in T. Let ν(t) = u, let v ∈ T be a node with v < t, v /∈ S, ν(v) = >, such that for each
node w with t > w > v we have ν(w) = ¬ or ν(w) = u.

For T′ := T
[
>
S

]
we set T a` T′ .

(More precisely and according to our convention, we set T′ := T[S′ /> ], where S′ is
an isomorphic copy of S, having only fresh nodes.) We say that T′ is derived from T by
iterating S and T is derived from T′ by deiterating S.

Interation and Deiteration often combine with the addition and removal of >, and they are
probably the most complex rules. To exemplify them, we consider the following six ALC-
graphs. The second and the third graph can be derived from the first graph by iterating
the subgraph R1 C1? (preceeded by the >-addition rule). The next three graphs are

not results from the iteration rule. In the fourth graph, the condition that ν(w) = ¬ or
ν(w) = u holds for each node w with t > w > v is violated. The fifth graph violates the
condition v < t. Finally, the sixth graph violates the condition v /∈ S.

R1 C1

R2 C2

? R1 C1

R2 C2

R1 C1

? R1 C1

R2 C2

R1 C1

?

R1 C1

C2R2

R1 C1

? R1 C1

R2 C2
R1

C1

?

R1 C1

R1 C1

R2 C2

?

Iteration of Roles into even, Deiteration of Roles from odd (R-it., R-deit.):
Let T be an ALC-tree. Let Sa,Sb,S1,S2 be ALC-trees with Sa := u(RS1,¬RS2) and
Sb := R u (S1,¬S2). Moreover, let Sa ⊆ T be a positively enclosed subtree.

For T′ := T[Sb /Sa ] we set T ` T′ ,

and we say that T′ is derived from T by deiterating the role R from odd. Vice
versa, let Sb ⊆ T be a negatively enclosed subtree.

For T′ := T[Sa /Sb ] we set T ` T′ ,

and we say that T′ is derived from T by iterating the role R into even.

Below, a simple example for the rule with Peirce’s graphs is provided.
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R

R

? 1C

C2

R-deit

`
R? 1

C

C

2

Based on these rules, we can now define formal proofs.

Definition 9.2 Let Ta,Tb be two ALC-Trees. A proof for Ta ` Tb is a finite se-
quence (T1,T2, . . . ,Tn) with Ta = T1, Tb = Tn, where each Ti+1 is obtained from Ti

by applying one of the rules of the calculus.

Now let {Ti | i ∈ I} be a set of ALC-Trees and let T be an ALC-Tree. We set

{Ti | i ∈ I} ` T :⇐⇒ there are ALC-Trees T1, . . . ,Tn ∈ {Ti | i ∈ I}
with T1 u . . . uTn ` T

Before the soundness and completeness of the calculus is presented, we first present an
example of a proof, using the Peirce-style diagrams, and then derive some useful meta-
rules. The example and the meta-rules will give some insights in how the calculus works.

A popular toy example for reasoning within ALC is the mad cow ontology. Consider the
following ALC-definitions:

Cow ≡ Animal u V egetarian Sheep ≡ Animal u hasWool

V egetarian ≡ ∀eats.¬Animal MadCow ≡ Cow u ∃eats.Sheep

The question to answer is whether this ontology is consistent. This question can be
reduced to rewriting the ontology to a single concept

MadCow ≡ Animal u ∀eats.¬Animal u ∃eats.(Animal u hasWool)

and investigating whether this concept is satisfiable, i.e., whether there exists as least
one interpretation where this concept is a non-empty set. We will show that this is not
the case by proving with our calculus that the concept entails the absurd concept. The
proof is given below.

eats Animal
hasWool

eats Animal

Animal?
era

` eats Animal

?

eats Animal
hasWool

era

` eats Animal

?

eats Animal

>−rem

` eats Animal

?

eats Animal

>−rem

`
eats Animal

eats

?

Animal
deit

` eats

?

Animal

era

` ?
>−rem

` ?

We started with the ALC-graph for the given concept and derived the absurd concept,
thus the ontology is not satisfiable.
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Next, we provide the above mentioned metarules, some of them will be used in the
completeness proof.

Each rule of the calculus is basically the substitution of a subtree of a given ALC-
tree by another subtree. Each rule can be applied to arbitrarily deeply nested subtrees,
although we need to keep track in order to distinguish whether a subtree is positively
and negatively enclosed. Moreover, if we have a rule that can be applied to positively
enclosed subtrees, then we always have a rule in the converse direction that can be applied
to negatively enclosed subtrees (and visa versa). Due to these structural properties of
rules, we immediately obtain the following helpful lemma (adopted from [70]).

Lemma 9.1 (Cut-and-Paste Theorem) Let S1,S2 be two ALC-trees with S1 ` S2.
Let T be an ALC-tree. Then if S1 ⊆ T is a positively enclosed subtree of T, we have
T ` T[S2 /S1 ]. Visa versa, if S2 ⊆ T is a negatively enclosed subtree of T, we have
T ` T[S1 /S2 ].

The next lemma corresponds to the equivalence of the ALC-concepts ∀R.(C u D) and
∀R.C u ∀R.D.

Lemma 9.2 (Splitting Roles) Let S1,S2 be ALC-trees, let R ∈ R be a role name.
Then the trees

1S
2S

? R and

1S

2S

?

R

R

are equivalent.

Proof: We start with the direction from left to right.

1S
2S

? R
>-add

` 1S
2S

? R
it

`

1S
2SR

1S
2SR

?
era

`
1S
2SR

1S

?

R

>-rem

` 1S
2SR

1SR

?
era

`

1SR

2S

?

R
>-rem

`

1S

2S

?

R

R

Again, we see that the deiteration-rule and the erasure rule are usually followed by the
>-removal rule – and visa versa – the iteration rule and the insertion rule are usually
preceeded by the >-addition rule. In the following, these two steps are combined without
explicitly mentioning the >-removal/addition rule.
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R

R
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` 1S
2S
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For ALC, the full deduction theorem holds.

Theorem 9.3 (Deduction Theorem) Let T be a set of ALC-trees, let T1,T2 be two
ALC-trees. Then we have

T ∪ {T1} ` T2 ⇐⇒ T ` ¬(T1 u ¬T2)

Proof: In the ongoing proofs, again applications of the >-removal/addition rule are not
explicitely mentioned. We start with ‘⇒’. Let S1, . . . ,Sn ∈ T with S1u. . .uSnuT1 ` T2.
We have:

T ` ?
1 nS S dn

` ?
1 nS S ins

` ?
1 n n1S S S S T1

it

` ?
1 n 1 n 1 n 11S S S S T SS T Lem. 9.1

` ?
1 n 1 n 1 2S S S S T T

deit

` ?
1 n 1 2S S T T era

` ?
1 2T T

For ‘⇐’, we have T ` ¬(T1u¬T2) and T∪{T1} ` T1, thus T∪{T1} ` T1u¬(T1u¬T2).
We proceed as follows:

T ` ?
1 21T T T deit

` ?
1 2T T dn

` ?
1 2T T era

` ? T2 2

The next lemma corresponds to the rule of neccessitation in modal logics.

Lemma 9.3 If T is an ALC-tree with ` T, then we have ` ¬R¬T as well.
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Proof: All rules of the calculus modify subtrees S of a givenALC-tree T, and their applica-
tion depends only on whether S is positively or negatively enclosed. So if (T1,T2, . . . ,Tn)
with T1 = > and Tn = T is a proof for T, then (>,¬R¬T1,¬R¬T2, . . . ,¬R¬Tn) is
a proof for ` ¬R¬T. The additional first step is an application of the rule ‘addition of
roles’. 2

Please note that for this lemma, it is vital that T is derived from the empty set (the
empty sheet of assertion in Peirce’s terminology). The proof of the lemma does not work
if T is derived from some set T, and it can easily be seen that we generally cannot
conclude T ` ¬R¬T from T ` T.

In the following, the soundness and completeness of the calculus is proven. Common
calculi (like Hilbert-style calculi, natural deduction, or sequent calculi) are shallow in the
understanding that the rules of the calculus modify formulas only at their top-level. In
constrast, the rules presented in this paper are deep rules, as they modify deeply nested
subtrees. For this reason, the following lemma is helpful for proving the soundness of the
rules.

Lemma 9.4 Let T1, T2, S1, S2 be ALC-trees with T2 = T1[S2 /S1 ].

(i) If S1 |= S2 and the substitution takes place in an even, then T1 |= T2.
(ii) If S2 |= S1 and the substitution takes place in an odd, then T1 |= T2.
(iii) If S1 and S2 are semantically equivalent, then so are T1 and T2.

Proof: The proof of this lemma is a straight-forward induction on ALC-trees.
We are now prepared to prove the soundness of the calculus.

Theorem 9.4 (Soundness of the Calculus) If (∆I , I) is a model and if T′ is ob-
tained from T by one of the rules of the calculus, we have I(T) ⊆ I(T′).

Proof: The ALC-trees S and u(S,>) are obviously equivalent. So the soundness of
the rule ‘Addition or Removal of >’ follows immediately from Lemma 9.4(3). The rules
‘Addition or Removal of Roles’, ‘Associativity of Conjunction’ and ‘Addition or Removal
of a Double Negation’ are handled similarly.

Next, as we have T |= >, Lemma 9.4(1) yields the soundness of the erasure of a a posi-
tively enclosed subtree, and Lemma 9.4(2) yields the soundness of the insertion negatively
enclosed subtree.

Next we consider the iteration and deiteration of roles. Let Sa,Sb be defined as in the
rule. We will show Sa |= Sb. Let a ∈ I(Sa). Then it follows a ∈ I(RS1) and a ∈ I(¬RS2).
Therefore there exists b ∈ ∆I with aRb and b ∈ I(S1), but there exists no c ∈ ∆I with
aRc and c ∈ I(S2). Particularly, we have b /∈ I(S2). We conclude b ∈ I(¬S2), so we
have b ∈ I(u(S1,¬S2)) as well. Due to aRb, we finally obtain a ∈ I(Sb). As we now have
Sa |= Sb, Lemma 9.4(1) yields the soundness of deiterating a role R from an odd, and
Lemma 9.4(2) yields the soundness of iterating a role into an even.

Finally, we have to prove the soundness of the iteration and deiteration rule. First note
the iteration rule removes v from T and adds the fresh nodes of S′ to T , i.e., we have
T −{v} ⊆ T ′. To ease the technical presentation, let us assume that the greatest element
of S′ is v (instead of a fresh node), so that we have T ⊆ T ′.

For a node w ∈ T , let Tw be the corresponding subtree of T, and let T′
w be the cor-

responding subtree of T′ (particularly, due to our assumption, we have Tv = > and
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T′
v = S′). We will prove that Tt and T′

t are semantically equivalent. So let a ∈ ∆I . We
have to show that,

a ∈ I(Tw) ⇐⇒ a ∈ I(T′
w) (2)

holds for w = t. We have T′ = T[T′
t /Tt ], so once Equation. (2) is proven for w = t,

we can now apply Lemma 9.4(3) and obtain that T and T′ are semantically equivalent,
which yields the soundness of the iteration and deiteration rule. So it remains to show
Equation (2).

In either T and T′, the node t has two branches, one of which is S. If we have a /∈ I(S),
we have a /∈ I(Tt) and a /∈ I(T′

t) as well, so Equation (2) holds. Now let us assume the
alternate case, that we have a ∈ I(S). We will prove that Equation (2) holds for each w
with t ≥ w ≥ v by induction over w.

We have Tv = >, T′
v = S, a ∈ I(>) and a ∈ I(S′), so Equation (2) holds for w = v.

For the induction step, let w be such that the induction hypothesis is proven for the child
u of w with u ≥ v. There are two cases to consider: ν(w) = ¬ or ν(w) = u.

For ν(w) = ¬, we have Tw = ¬Tu and T′
w = (w,¬)⊕T′

u. As we have a ∈ I(Tu) ⇔ a ∈
I(T′

u) due to the induction hypothesis, we obtain that Equation (2) holds for w.

For ν(w) = u, w has two children, one of them being u. Let u′ be the child of w which
is different from u. Then we have Tw = u(Tu,Tu′) and T′

w = u(T′
u,T′

u′). Moreover,
we have Tu′ = T′

u′ , and a ∈ I(Tu) ⇔ a ∈ I(T′
u) holds due to the induction hypothesis.

From this we conclude that Equation (2) holds.

This finishes the induction, so we conclude Equation (2) for w = t, which in turn finishes
the proof for the soundness of the iteration and deiteration rule. 2

We are now prepared to prove the completeness of the calculus. The following proof is a
standard proof for the completeness of a Hilbert-style calculus for the multi-modal logic
K, adapted to our system of ALC-trees.
Theorem 9.5 (Completeness of the Calculus) Let T := {Ti | i ∈ I} be a set of
ALC-Trees and let T be an ALC-Tree. Then we have:

{Ti | i ∈ I} |= T =⇒ {Ti | i ∈ I} ` T

Proof: We assume that there is no derivation of T from T, and we show that T 6|= T.

We call a set S of ALC-Trees inconsistent, if we have S ` ¬>. Due to the deduction
theorem, S is inconsistent if and only if there are S1, . . . ,Sn ∈ S with ` ¬(S1u . . .uSn).
We assume that there is no proof of T from T. Then T ∪ {¬T} is consistent.

For a set S of ALC-Trees and a role name R, let SR := {S | ¬R¬S ∈ S}. We first prove
the following property:

If S is consistent, where R¬S ∈ S, then SR ∪ {¬S} is also consistent. (3)

It is easier to show the contraposition of Eqn. (3), so we assume that SR ∪ {¬S} is not
consistent. Then there exists finitely many elements S1, . . . ,Sn of SR such that there is
a proof of ¬(S1 u . . .Sn u¬S) (from the empty set). Now Lemma 9.3 yields that we have
a proof of ¬R¬¬(S1 u . . .Sn u ¬S) as well. We proceed as follows:
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So S is also T-inconsistent, thus Eqn. (3) holds.

Now, using a standard argument based on the axiom of choice, every consistent set can
be extended to a maximal consistent set, i.e., a consistent set which cannot be properly
extended to another consistent set.

Next, for a maximal consistent set Sm, we have

S ∈ Sm ⇐⇒¬S /∈ Sm (4)

S u S′ ∈ Sm ⇐⇒ S ∈ Sm and S′ ∈ Sm (5)

for arbitrary ALC-Trees S,S′. We only prove Eqn. (4), the proof of Eqn. (5) is done
similarly.

Due to S u ¬S
deit

` S u ¬>
era

` > u ¬>
>-rem

` ¬>, and as we can infer any tree from ¬>,
we cannot have both S ∈ Sm and ¬S ∈ Sm. On the other hand, let us suppose we have
¬S /∈ Sm. Then we have Sm 6` ¬S. Assume Sm ∪ {S} is inconsistent. Then we have
S1, . . . ,Sn ∈ Sm with ` ¬(S1 u . . .uSn uS). Thm. 9.3 yields S1 u . . .uSn ` ¬S, i.e., we
have Sm ` ¬S. This contradicts Sm 6` ¬S. So if ¬S /∈ Sm, then Sm ∪ {S} is consistent,
thus S ∈ Sm due to the maximality of Sm. Hence Equation (4) is proven.

Now we construct a model (∆I , I) as follows. We set

∆I := {Sm | Sm is maximal consistent}
I(A) := {Sm | TA ∈ Sm}
I(R) := (Sm,Tm) | SR

m ⊆ Tm}}

We prove by induction over the construction of ALC-trees that for S ∈ ALCTree and
Sm ∈ ∆I we have

Sm ∈ I(S) ⇐⇒ S ∈ Sm (6)
For a concept name A, Eqn. (6) holds by the definition of the model. For a tree ¬S, we

have Sm ∈ I(¬S) Def. I⇐⇒ Sm /∈ I(S) I.H.⇐⇒ S /∈ Sm
Eqn. (4)⇐⇒ ¬S ∈ Sm. For a tree S u S′,

Eqn. (6) is similarly proven using Eqn. (5). It remains to consider role names.

Let R ∈ R. We first prove Eqn. (6) for ALC-trees S′ := ¬R¬S (instead of S′ := RS).
Due to our induction, we can assume that Eqn. (6) is proven for all ALC-trees which
have less occurrences of R than S′. Def. 7.1 yields

Sm ∈ I(¬R¬S) ⇐⇒ for all Tm with (Sm,Tm) ∈ I(R) we have Tm ∈ I(S) (7)
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Suppose first we have S′ ∈ Sm. If Tm ∈ ∆I is arbitrary with (Sm,Tm) ∈ I(R), then
S ∈ Tm by the definition of the model. The induction hypothesis yields Tm ∈ I(S), so
Eqn. (7) yields Sm ∈ I(S′). Next suppose S′ /∈ Sm. Eqn. (4) yields R¬S ∈ Sm. Let
T′ := SR

m ∪ {¬S}. Then T′ is consistent due to Eqn. (3). Let Tm ⊇ T′ be a maximal
consistent set. Then Tm ∈ ∆I , and (Sm,Tm) ∈ I(R). Since ¬S ∈ T′ ⊆ Tm, we have
S /∈ Tm. The induction hypothesis yields Tm /∈ I(S), thus Sm /∈ I(S′) due to Eqn. (7).
Hence Eqn. (6) is proven for S′ = ¬R¬S.

To finish the proof of Eqn. (6), let us finally observe that for ALC-trees of the form RS,
we have Sm ∈ I(RS) ⇐⇒ Sm /∈ I(¬R¬¬S) s.a.⇐⇒ ¬R¬¬S /∈ Sm ⇐⇒ RS ∈ Sm. So
Eqn. (6) is proven.

Now let Sm ∈ ∆I . We have: Sm ∈
⋂

S∈T I(S) ⇐⇒ Sm ∈ I(S) for all S ∈ T
Eqn. (6)⇐⇒ S ∈

Sm for all S ∈ T ⇐⇒ T ⊆ Sm. This yields
⋂

S∈T I(S) = {Sm ∈ ∆I | Sm ⊇ T}. As
T ∪ {¬T} is consistent, there exist a maximal consistent set T0

m ⊇ T ∪ {¬T}. On the
one hand, we now have T0

m ∈
⋂

S∈T I(S). On the other hand, we have T /∈ T0
m, thus

T0
m /∈ I(T) by Eqn. (6). So we obtain

⋂
S∈T I(S) 6⊆ I(T), which means T 6|= T. 2

10. Conclusion and Further Research

This paper has discussed different diagrammatic reasoning systems – spider and con-
straint diagrams on the one hand, existential and conceptual graphs on the other – as
candidates for a diagrammatic version of DL. It has been argued that spider and con-
straint diagrams are not as well suited to a diagrammatic version of DLs as conceptual
graphs and existential graphs. More specifically, a version of conceptual graphs including
negation and free variables, and relation graphs – existential graphs with free variables
– are suited as a diagrammatic version of the smallest propositionally closed DL ALC.
We claim further that relation graphs are slightly easier to comprehend. We then elabo-
rated a fragment RGALC of relation graphs that correspond to the ALC, and provided
a diagrammatic, sound and complete calculus for RGALC , based on Peirce’s rules for
existential graphs.

The results presented in this paper provide promising steps toward further investigating
RGs as diagrammatic versions of DLs. There are several open problems that have to
be addressed by extension research. First, our approach could be extended to other
constructs of DL. For example, to investigate how the intersection of roles, inverse of roles,
and unary (one-of) concepts can be built into the diagrammatic reasoning frameworks
(this would obtain a strict extension of the results of [17,3]).

From the syntactical and semantical point of view this will not yield any more significant
problems than those we have already encountered. We can extend the graphs of RGALC

such that we allow objects at the end of heavily drawn lines (adding constants and
function names to RGs is elaborated in [26]) or cycles, where only two branching points
are involved 16 . For example, the concept description

Man u ∃(hasFriend u hasColleague).{john}

16 In [3] the authors allow the intersection of roles and write that the corresponding SCGs are trees,

where they say that “a SCG t is called a tree iff t contains no cycles of length greater than 2.”
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describing ‘some man having John as friend and colleague’, could be depicted as follows:
hasFriend

john
hasCollegue

?

Similarly, from a syntactic and semantic point of view, allowing concepts of the form
{o1, . . . , on} is not problematic either.

More importantly, the approach we present can to be extended to number restriction.
In this case we encounter the SH-family of DLs and in so doing have the capacity
to provide diagrammatic representations of the underlying DLs used in OWL. From a
representational point of view a commonly used notation for number restrictions could be
used: such as the (min, max)-notation used widely in both entity-relationship-diagrams
(EER) and UML. For example, the concept

Manu ≥ 10hasFriend.Manu ≤ 5hasColleague.Woman

of men who have at least 10 men as friends and not more than 5 female colleagues, could
be depicted as follows:

hasFriend

hasCollegue

? Man

Man
(0,5)

(10,N)

Woman

Further the syntactical restrictions of DL yield corresponding syntactical restrictions in
RGALC . It is possible to benefit from these restrictions by adding some “syntactic sugar”
to the graphs, which is not possible for the general class of RGs. This applies for example
to the universal quantifier of DL. Below is the general form of the value restriction of DL,
its translation with Ψ, and an modified version without cuts, where the heavily drawn
line on the right is now marked with an universal quantifier.

∀R.C Ψ C( )R? Ψ C( )R?

Similar considerations are imposed by allowing an expicit notation for disjunction. This
would allow cut-free representations for all formulas of ALE . For example, Fig. 20 pro-
vides an ALC-concept and two possible improvements of the corresponding Peirce dia-
grams.

Man u ∃hasChild.Female u ∃hasChild.Male u ∀hasChild.(Rich tHappy)

Rich

Happy

Female

Male

Man?

hasChild

hasChild

hasChild

Rich

Happy

Man?

hasChild

hasChild

hasChild

Female

Male

Fig. 20. An ALC-concept descriptions and two RGs with abbreviation for ∀ and disjunction

Finally, a main aspect of research in DLs focuses on complexity. At first glance, the
complexity issues should be independent from the notation but there are some promising
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results for Peirce’s existential alpha graphs (corresponding to propositional logic) in
terms of computability that show that Peirce’s rules have some nice complexity results.
In Dau [25], it is shown that the erasure-rule, which is the only rule for Peirce’s existential
alpha graphs that does not satisfy the finite subformula property, is admissible, and in
the remaining calculus, Statman’s formulas can still be proven in polynomial time.

Roughly speaking, Peirce’s calculus without the erasure rule has the nice computational
properties of sequent calculi without the cut-rule 17 , while it is as fast as sequent cal-
culi that includes the cut-rule 18 . It can be investigated whether similar results can be
obtained for the calulus presented in this paper.

For the moment, the first key issue addressed in his paper is the question of what (if any)
existing and well-known diagrammatic reasoning frameworks can be suitably adapted to
DL. We are confident that existential and conceptual graphs can be used as a diagram-
matic framework for DL and have presented our reasons for this conclusion. The second
key issue was to elaborate a diagrammatic reasoning system for ALC based on existential
graphs, including a diagrammatic, sound and complete calculus. In the long run, we in-
tend to develop major variants of DLs as mathematically precise diagrammatic reasoning
systems. The intention is to render DL more user-friendly. Such systems need to be eval-
uated against the traditional textual form of DL in order to measure any improvement
to the readability of the DL in its diagrammatic form. Such evaluations involve usability
experiments and substantial empirical testing and are beyond the scope of this paper
which restricts itself to the technical feasibility of the candidate diagrammatic reasoning
frameworks to DL.

11. Appendix

The following abbreviations are used:

DL description logic FOL first order logic

SD spider diagram CD constraint diagram

CG conceptual graph SCG simple conceptual graph

CGwC concept(ual) graph with cuts EG existential graph

RG relation graph OWL Ontology Web Language

UML Unified Modeling Language RDF Resource Description Framework
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