
Some Notes on Proofs with Alpha Graphs

Frithjof Dau

Technische Universität Dresden, Dresden, Germany
dau@math.tu-dresden.de

Abstract. It is well-known that Peirce’s Alpha graphs correspond to propo-
sitional logic (PL). Nonetheless, Peirce’s calculus for Alpha graphs differs to
a large extent to the common calculi for PL. In this paper, some aspects of
Peirce’s calculus are exploited. First of all, it is shown that the erasure-rule
of Peirce’s calculus, which is the only rule which does not enjoy the finite
choice property, is admissible. Then it is shown that this calculus is faster
than the common cut-free calculi for propositional logic by providing formal
derivations with polynomial lengths of Statman’s formulas. Finally a natu-
ral generalization of Peirce’s calculus (including the erasure-rule) is provided
such that we can find proofs linear in the number of propositional variables
used in the formular, depending on the number of propositional variables in
the formula.

1 Introduction

At the dawn of modern logic, Peirce invented his system of Existential Graphs
(EGs), starting in 1896 and working extensively on it until he passed away in 1914
(see for example [Pei35, Pei92, PS00]). Peirce’s EGs are divided into three parts
which built upon each other, namely Alpha, Beta, and Gamma. Alpha corresponds
to propositional logic (PL), Beta correspond to first order logic, and Gamma, which
was never completed, encompasses aspects of higher order logic, modal logic and
other features. Although not mathematically formalized, his Alpha and Beta EGs
are one of the very early elaborations of mathematical logic.1 But at the end of the
19th century, symbolic notations had already had taken the vast precedence in the
development of formal logic, and EGs did not succeed against symbolic logic.

Several authors investigated Peirce’s EGs from different perspectives, some of
them aiming to elaborate a (more or less) mathematical theory of them (see for
example [Zem64, Rob73, Bur91, Shi02a, Dau06]). Some works focus particularly on
Alpha graphs (like [Ham95, Shi02b]) or more particular on finding proofs within
Alpha ([Liu05]). But there are only few people who try to implement Peirce’s calcu-
lus for automated theorem proving (see [HK05, vH03]), and one has to say that in
the automated theorem proving community, Peirce’s calculus is not acknowledged
at all. This paper aims to exploit some aspects of Peirce’s calculus which may be
helpful for automated theorem proving with this calculus.

Peirce’s calculus for Alpha graphs differs to a large extent to the common calculi
for propositional logic (PL). In usual calculi for PL, the transformation rules are
defined along the inductive construction of formulas. That is, each transformation
rule modifies formulas only on their top-level of their construction trees. In other
words: We have shallow inferences. In contrast to that, Peirce’s calculus allows
to transform arbitrary deep subformulas of given formulas, i.e. to carry out deep
inferences. To the best of my knowledge, there is only one proof-system which
employs deep inferences as well, namely the calculus of structures of Gulielmi (see
[Brü03]). But deep inference systems, particularly Peirce’s rules for EGs, have some
1 Although Peirce did not provide any mathematical definitions for EGs, a mathematical

elaboration of EGs can be obtained from a closer scrutiny of his works. See [Dau06].)

interesting properties which are of interest for automated theorem proving, as it
is argued by Gulielmi for his calculus of structures. Some of these properties of
Peirce’s rules for Alpha graphs are investigated in this paper.

The organization of the paper is as follows: In Sec. 2, the basic notations, in-
cluding syntax, semantics, and the calculus for Alpha graphs are introduced. Due to
space limitations, we will use the linear notation for Alpha graphs. In Sec. 3, some
basic theorems for Alpha graphs are provided. In Sec. 4, it is shown how Alpha
graphs can be converted to normalforms, and, in order to obtain an analytic calcu-
lus, it is proven that the erasure-rule of the calculus can be removed. In Sec. 5 it
is proven that the calculus is faster than the common calculi for propositional logic
by showing that Statman’s formulas can be proven in polynomial time. In Sec. 6,
a version of the calculus with generalized rules is introduced, and it is shown that
with this calculus, the number of steps of a proof for a formula f depends linearly
from the number of propositional variables which occur in f . Finally in Sec. 7, the
paper concludes with a discussion of the results.

2 Basic Notations for Alpha Graphs

In this paper, we will use the linear notion for Peirce’s Alpha graphs. More pre-
cisely: Alpha graphs are introduced as formulas of propositional logic, equipped
with an equivalence relation which encompasses the syntactical properties of Alpha
graphs, mainly the commutativity and associativity of the juxtaposition of graphs,
which corresponds on the semantical side to the commutativity and associativity of
conjunction.2

The formulas of propositional logic, thus Alpha graphs as well, are built over a
set P := {P1, P2, P3, . . .} of propositional variables and a symbol > /∈ P for truth,
and we use the logical junctors ¬ and ∧. Now each Pi for i ∈ N and > are formulas,
if f is a formula, then ¬f is a formula, and if f1, f2 are formulas, then (f1 ∧ f2) is a
formula. We will omit brackets if it is convenient. As usual, the formulas Pi and ¬Pi

with i ∈ N are called literals. We will use the letters A,B to denote propositional
variables as well, and the letters f, g, h, k, l to denote formulas.

In Peirce’s calculus for EGs, the transformation rules allow to modify arbitrary
subgraphs in arbitrary contexts. This idea will be carried over to the symbolic notion
of propositional logic. First of all, when we speak in this paper about subformulas,
we mean subformula occurrences. For example, for the formula P1∧P1, as P1 appears
twice in this formula, we will say that it has two subformulas P1. Square brackets
are used to denote contexts. For example, with f [g] we denote a formula f with
a subformula g. A subformula g of f is evenly enclosed resp. is placed in a
positive context if it is a subformula of an even number of subformulas ¬h of
f . Otherwise it is said to be oddly enclosed resp. to be placed in a negative
context. This will be denoted by f [g]+ resp. f [g]−. This notation can be nested.
For example, with f [P2∧ g[h]], it is expressed that g is a formula with a subformula
h, and f is a formula with the subformula P2 ∧ g (= P2 ∧ g[h]).

In Peirce’s graphs, conjunction can only be expressed up to commutativity and
associativity. Moreover, empty negations are allowed: For this reason, we had to
add the symbol > to our alphabet. In the following, formulas are considered only

2 A similar approach is common in mathematical logic as well. For example, sequents in
a sequent calculus are usually defined as multisets of formulas, thus we already have
on the syntactical side encompassed commutativity and associativity of conjunction.
Similarly, sometimes formulas are considered only modulo an equivalence relation. The
equivalence classes are called structures. See for example [Brü03]).

2

up to the following equivalence relation ∼:

Commutativity: (f ∧ g) ∼ (g ∧ f)
Associativity: ((f ∧ g) ∧ h) ∼ (f ∧ (g ∧ h))
Truthelement: (f ∧ >) ∼ f
Congruence: f [g] ∼ f [h] if g ∼ h

Each class of formulas corresponds to a Peircean Alpha graph, thus this definition of
propositional logic can be understood as a formalization of Peirce’s Alpha system.

Now we are prepared to introduce the calculus. It consists of the following six
rules (where f, g, h, i denote arbitrary formulas).

Erasure: f [g ∧ h]+ ` f [g]+

Insertion: f [g]− ` f [g ∧ h]−

Iteration: f [g ∧ h[i]] ` f [g ∧ h[g ∧ i]]
Deiteration: f [g ∧ h[g ∧ i]] ` f [g ∧ h[i]]
Double Cut i): f [¬¬g] ` f [g]
Double Cut ii): f [g] ` f [¬¬g]

Let f , g be two graphs. Then g can be derived from f (which is written
f ` g), if there is a finite sequence (f1, f2, . . . , fn) with f = f1 and g = fn such
that each fi+1 is derived from fi by applying one of the rules of the calculus. The
sequence is called a proof or derivation for f ` g (of length n − 1). Two
graphs f, g with f ` g and g ` f are said to be provably equivalent.

If F is a set of graphs, we write F ` f if there are f1, . . . , fi ∈ F with f1∧. . .∧fi `
f . With f `n g we mean that g can be derived from f in (at most) n steps. For
> ` f , we write more simply ` f resp. `n f . This set of rules is (strongly) sound
and complete, as it is shown in [Dau04]. We use the usual abbreviation, i.e., f ∨ g
is a (mere syntactical) abbreviation for ¬(¬f ∧ ¬g), f → g abbreviates ¬(f ∧ ¬g),
and f ↔ g abbreviates (f → g) ∧ (f → g), that is ¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f).

The semantics are now defined in the usual way. A valuation or model is a
mapping val : P ∪ {>} 7→ {ff, tt} with val(>) = tt. Let val : P 7→ {ff, tt} be a
valuation. We set val |= Pi :⇔ val(Pi) = tt, val |= (f ∧ g) :⇔ val(f) = tt =
val(g), and val |= ¬f :⇔ val(f) = ff. For val |= f , we say that f holds in
val. If we have two formulas f , g such that val |= g for each valuation val with
val |= f , we write f |= g, and we say that f entails g. Finally, a formula f is called
satisfiable, iff there exists a valuation val with val |= f , it is called valid or a
tautology, iff val |= f for each valuation val, and it is called contradictory,
iff val 6|= f for each valuation val.

3 Some Simple Theorems

In [Pei35] Peirce provided 16 useful transformation rules for EGs which he derived
from his calculus. These rules are logical metalemmata in the sense that they show
some schemata for proofs with EGs, i.e., they are derived ‘macro’-rules. In this
section we provide the formal Alpha graph versions for two of these transformation
rules. We start with a (weakened) version of the first transformation rule of Peirce.

Lemma 1 (Reversion Theorem). Let f and g be two formulas. Then we have:

f `n g ⇒ ¬g `n ¬f and ¬g `n ¬f ⇒ f `n+2 g

Proof: Let (h1, h2, . . . , hn) with h1 = f and g = hn be a proof for f ` g. Then,
due to the symmetry of the calculus, (¬hn,¬hn−1, . . . ,¬h1) is a proof for ¬g ` ¬f .

3

Analogously, from ¬g `n ¬f we conclude ¬¬f `n ¬¬g. An additional application
of the double cut rule at the beginning and the end of the proof yields f `n+2 g. 2

Let g be a subformula of f . With f [h/g] we denote the graph where g is substi-
tuted by h. If g is a subgraph in a positive context, we will more explicitely write
f [h/g]+, and analogously f [h/g]− for negative contexts.

All rules in the calculus which are applied in a context only depend on whether
the context is positive or negative. In particular if a proof for f ` g is given, this
proof can be carried out in arbitrary positive contexts. Together with the previous
lemma, this yields the following lemma. It can also be found in [Sow97] (from where
we adopted the name of the theorem).

Lemma 2 (Cut-And-Paste-Theorem I). Let g `n h for formulas g, h. Then:

f `n f [h/g]+ and f `n+2 f [g/h]−

Particularly, tautologies can be inserted into arbitrary contexts of arbitrary formulas.

With f [[h/g]] we denote the formula we obtain from f by substituting every subfor-
mula (i.e., every occurence of the subformula) g by h.

Lemma 3 (Cut-And-Paste-Theorem II). Let g be a formula with `n g, let Pi

be a propositional variable and f be another formula. Then we have `n f [[g/Pi]].

Proof: Let (h0, h2, . . . , hn) with hn = f be a proof for f . Then it is easy to see that
(h0[[g/Pi]], h2[[g/Pi]], . . . , hn[[g/Pi]]) is a proof for f [[g/Pi]]. 2

The next two lemmata are two other metalemmata which ease the handling of
proofs (they will be needed in Sec. 6). To ease the readability of the proofs, we
have sometimes underlined the subformulas which will be used in the next step (for
example, by deiterating them).

Lemma 4 (Proof by Distinction). Let f, g be formulas. Then we have

(g → f) ∧ (¬g → f) `7 f

Proof : (g → f) ∧ (¬g → f) = ¬(g ∧ ¬f) ∧ ¬(¬g ∧ ¬f)
it.

` ¬(g ∧ ¬f) ∧ ¬(¬(g ∧ ¬(g ∧ ¬f)) ∧ ¬f)
era.

` ¬(¬(g ∧ ¬(g ∧ ¬f)) ∧ ¬f)
deit.

` ¬(¬(g ∧ ¬g) ∧ ¬f)
deit.

` ¬(¬(g ∧ ¬>) ∧ ¬f)
era.

` ¬(¬¬> ∧ ¬f)
dc.

` ¬(> ∧ ¬f)

∼ ¬¬f

dc.

` f 2

Lemma 5. Let f, g be formulas. Then we have (f ↔ g) ↔ g `14 f .

Proof: We provide a formal derivation of (f ↔ g) ↔ g ` f . The last step is done
with Lem. 4. As we had 7 derivational steps so far, we have a total of 14 steps.

4

(f ↔ g) ↔ g = (¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f)) ↔ g

= ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f)))
deit.

` ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ ¬¬f))
dc.

` ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬(f ∧ ¬g) ∧ f))
deit.

` ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(¬¬g ∧ f))
dc.

` ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬(g ∧ f))
deit.

` ¬(¬(f ∧ ¬g) ∧ ¬(g ∧ ¬f) ∧ ¬g) ∧ ¬(g ∧ ¬f)
deit.

` ¬(¬(f ∧ ¬g) ∧ ¬g) ∧ ¬(g ∧ ¬f)
deit.

` ¬(¬f ∧ ¬g) ∧ ¬(g ∧ ¬f)
∼ ¬(g ∧ ¬f) ∧ ¬(¬g ∧ ¬f)
= (g → f) ∧ (¬g → f)
`7 f 2

4 Normalforms and Admissibility of Erasure

In automatic theorem proving, for tracking back a proof, a desirable feature of
the calculus is the so-called subformula property which states that all formulas in
a derivation are subformulas of the endformula. The essence of the subformula
property is the fact that given a conclusion, every inference rule yields a finite
set of possible premises. Let us call this property finite choice property (see for
example [Brü03]). It is easy to see that in Peirce’s calculus, only the erasure-rule
does not satisfy the finite choice property. In this section, it is shown that the
erasure-rule is admissible, i.e. the remaining calculus is still complete.

The restricted version of the calculus, where the erasure-rule is removed, is
denoted by −̀e. Due to symmetry reasons, we will consider a calculus −̀i, that is
` without the insertion-rule, as well. In this section, it will be firstly shown how
formulas can be converted to normalforms with ` and −̀e, and then how proofs
with −̀e can be found in an effective way.

Lemma 6 (Reducing Transformation I). The formulas ¬(f ∧ ¬(g ∧ h)) and
¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) are provably equivalent in −̀i. More precisely, we have

¬(f ∧ ¬(g ∧ h)) `3
−i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) `4

−i ¬(f ∧ ¬(g ∧ h)) (1)

Proof: ¬(f ∧ ¬(g ∧ h))
it.

−̀i ¬(f ∧ ¬(g ∧ h)) ∧ ¬(f ∧ ¬(g ∧ h))
era.

−̀i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬(g ∧ h))
era.

−̀i ¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h) (∗)
it.

−̀i ¬(f ∧ ¬(g ∧ ¬(f ∧ ¬h))) ∧ ¬(f ∧ ¬h)
era.

−̀i ¬(f ∧ ¬(g ∧ ¬(f ∧ ¬h)))
deit.

−̀i ¬(f ∧ ¬(g ∧ ¬¬h))
dc.

−̀i ¬(f ∧ ¬(g ∧ h))
The proof until (∗) shows the first part of the lemma, the remaining proof shows
the second part. 2

5

The proof of this lemma shows even more. It is carried out on the sheet of
assertion, thus, due to the Cut-And-Paste-Theorem I (Lem. 2), in can be carried out
in positive contexts. Moreover, its inverse direction can be carried out in arbitrary
negative contexts, where the rules iteration and deiteration as well as the rules
erasure and insertion are mutually exchanged. Thus we immediately obtain the
following corollary.

Corollary 1 (Reducing Transformation II).

F [¬(f ∧ ¬(g ∧ h)]− `4
−e F [¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h)]− `3

−e F [¬(f ∧ ¬(g ∧ h)]− (2)
F [¬(f ∧ ¬(g ∧ h)]+ `3

−i F [¬(f ∧ ¬g) ∧ ¬(f ∧ ¬h)]+ `4
−i F [¬(f ∧ ¬(g ∧ h)]+ (3)

With these results, it is possible to reduce the depth of a formula and to trans-
form it into its conjunctive normalform. Before we do so, some technical notations
have to be introduced. If g is a strict subformula of f (i.e., g is a subformula of f
and g 6= f), we write g < f resp. f > g. A sequence f = f0, f1, f2, . . . , fn is called
a nest of contexts of f , if

1. fi = ¬f ′i for each i ≥ 1 (i.e., each fi+1 begins with a negation sign ‘¬’),
2. fi > fi+1 for each i ≥ 0, and
3. For each 0 ≤ i ≤ n− 1, there is no formula ¬g with fi > ¬g > fi+1.

The number n is called the depth of the nest. A formula f is said to have depth n if
n is the maximal depth of all nests of f . Such a formula is said to be normalized to
depth n, if moreover for each nest f = f0, f1, f2, . . . , fn, there exists a propositional
variable Pi, i ∈ N, with fn = ¬Pi. Consider for example the following formulas:

f := ¬(P1 ∧ ¬P2 ∧ ¬P3) ∧ ¬P4 and g := ¬(P1 ∧ ¬(P2 ∧ P3)) ∧ ¬P4

Both f and g have depth 2, but only f is normalized to depth 2. A formula f
which is normalized to depth 2 is a conjunction of formulas ¬(g1 ∧ . . . ∧ gn), where
each gi is a literal. Thus f can be understood to be in CNF (conjunctive normal
form), expressed by means of ¬ and ∧ only. As ` is sound and complete, it is not
surprising that each formula can be transformed into its CNF. This is not possible
if we restrict ourselves to −̀e, but even then, it is possible to normalize each formula
to depth 3.

Lemma 7 (Normalform).

1. Using −̀e, each formula can effectively be transformed into a provably equivalent
formula which is normalized to depth 3.

2. Using `, each formula can effectively be transformed into a provably equivalent
formula which is normalized to depth 2.

Proof: We first prove 1. Let f be an arbitrary formula, assume that f is not nor-
malized to depth 3. Then there exists a nest f,¬f1,¬f2,¬f3 where f3 is not a
propositional variable, i.e., f3 is either of the form ¬g3, or it is the conjunction of
at least two nontrivial formulas, i.e., f3 = g3 ∧ g′3, with g3, g

′
3 6= >.

In the first case, we have more explicitely

f = g0∧¬f1 = g0∧¬(g1∧¬f2) = g0∧¬(g1∧¬(g2∧¬f3)) = g0∧¬(g1∧¬(g2∧¬¬g3))

Obviously, we can apply the double cut rule i) and obtain

f ` g0 ∧ ¬(g1 ∧ ¬(g2 ∧ g3)) ` f

In the latter case, we have f = g0 ∧¬(g1 ∧¬(g2 ∧¬(g3 ∧ g′3))). Now Eqn. (2) yields

f ` g0 ∧ ¬(g1 ∧ ¬((g2 ∧ ¬g3)) ∧ (g2 ∧ ¬g′3))) ` f

6

These transformations are carried out until we reach a formula which is normalized
to depth 3. Thus 1) is proven.

A formula which is normalized to depth 3 cannot be further reduced with
Eqn. (2), but Eqn. (3) can still be applied in the outermost context. Thus an anal-
ogous argument shows that with the double cut rule or Eqn. (3), each formula can
be transformed into a syntactically equivalent formula normalized to depth 2. 2

Example:

¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬(P5 ∧ ¬(P6 ∧ P7))))))
Cor. 1

−̀e ¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬P5) ∧ ¬(P4 ∧ ¬(¬(P6 ∧ P7))))))
dc.

−̀e ¬(P1 ∧ ¬(P2 ∧ ¬(P3 ∧ ¬(P4 ∧ ¬P5) ∧ ¬(P4 ∧ P6 ∧ P7))))
2 x Cor. 1

−̀e ¬(P1 ∧ ¬(P2 ∧ ¬P3) ∧ ¬(P2 ∧ ¬(¬(P4 ∧ ¬P5))) ∧ ¬(P2 ∧ ¬(¬(P4 ∧ P6 ∧ P7))))
2 x dc.

−̀e ¬(P1 ∧ ¬(P2 ∧ ¬P3) ∧ ¬(P2 ∧ P4 ∧ ¬P5) ∧ ¬(P2 ∧ P4 ∧ P6 ∧ P7))

In the following, we will show that each tautology can be derived with −̀e. A
well-known method to check the validity of a formula f is to check whether ¬f
is contradictory with the method of resolution. The basic idea of resolution is as
follows: If k, l are formulas and if A is a propositional variable which does neither
occur in k nor in l, then (A ∨ k) ∧ (¬A ∨ l) is satisfiable if and only if k ∨ l is
satisfiable. Now, in order to check whether ¬f is contradictory, subformulas of the
form (A∨ k)∧ (¬A∨ l) are successively replaced by k ∨ l until a formula is reached
from which it can be easily decided whether it is satisfiable.

For the ¬,∧-formalization of propositional logic, this basic transformation can
be reformulated as follows: Let k, l formulas, let A be a propositional variable which
does neither occur in k nor in l. Then ¬(A∧ k)∧¬(¬A∧ l) is satisfiable if and only
if ¬(k ∧ l) is satisfiable. The next lemma shows that the inverse direction of the
transformation of resolution can be derived in negative contexts with −̀e.

Lemma 8 (Inverse Resolution). Let A be a propositional variable, let k, l be
formulas where A does not occur. Then we have:

f [¬(k ∧ l)]− −̀e f [¬(A ∧ k) ∧ ¬(¬A ∧ l)]−

Moreover, ¬(k ∧ l) is satisfiable if and only if ¬(A ∧ k) ∧ (¬A ∧ l) is satisfiable.

Proof: f [¬(k ∧ l)]−
ins.

−̀e f [¬(A ∧ k) ∧ ¬(k ∧ l)]−

dc.

−̀e f [¬(A ∧ k) ∧ ¬(¬¬k ∧ l)]−

ins.

−̀e f [¬(A ∧ k) ∧ ¬(¬(A ∧ ¬k) ∧ l)]−

it.

−̀e f [¬(A ∧ k) ∧ ¬(¬(A ∧ ¬(A ∧ k)) ∧ l)]−

deit.

−̀e f [¬(A ∧ k) ∧ ¬(¬A ∧ l)]− 2

Now we are prepared to show that the erasure-rule is admissible.

Theorem 1 (Erasure is Admissible). If f is a tautology, we have −̀e f .

Proof: Due to Lem. 7, we can assume that f is normalized to depth 3, and f cannot
be a literal. For f = g1 ∧ g2, −̀e g1 and −̀e g2 yield −̀e f . Thus without loss of
generality, we can assume that f = ¬g for a formula g. Obviously, g is normalized
to depth 2, and g is contradictory (which is equivalent to f being tautologous).

7

Now we can resolve g to a formula h which is not resolvable (i.e., h does not
contain any subformula of the form ¬(A∧k)∧¬(¬A∧l), that is, the rule of resolution
cannot be applied). Then g is satisfiable if and only if h is satisfiable. Next, as g
is normalized to depth 2, h is normalized to depth 2, too. Moreover, as the inverse
direction of the resolution is derivable in −̀e due to Lem. 8, we have ¬h −̀e ¬g.
Thus it is sufficient to show that ¬h is derivable with −̀e.

As h is not resolvable, no propositional variable appears in different subformulas
¬h1, ¬h2 of h one time in a positive and one time in a negative context. Moreover,
due to the iteration-rule, we can assume that each propositional variable A ∈ P
occurs at most once in each subformula ¬h′ of h. Now we can assign the following
truth-values to all Pi ∈ P: We set val(Pi) := ff, if Pi occurs in a negative context
of h, and we set val(Pi) := tt otherwise. It is easy to see that if h is not of the

form ¬> ∧ k, then val |= h. Thus h has the form ¬> ∧ k. Then >
dc.

−̀e ¬¬>
ins.

−̀e

¬(¬> ∧ k) (= ¬h) is a derivation of ¬h in −̀e, thus we are done. 2

Due to f |= g ⇔ |= f → g, we can check f |= g with −̀e as well. But in
general, we do not have f |= g ⇒ f −̀e g, as the simple example P1 ∧ P2 |= P1

shows.

5 An exponential speed up

The most prominent rule in sequent-calculi is the cut-rule, a generalized version of

the modus ponens: Γ1 ` ∆1, A A, Γ2 ` ∆2

Γ1, Γ2 ` ∆1, ∆2
. Due to the ‘erasing of A’, this rule does

not satisfy the finite choice property. Gentzen’s famous cut-elimination-theorem
states that the cut-rule is admissible: Every proof using the cut-rule can be converted
into another proof without the cut-rule (proofs that do not use the cut-rule are called
analytic). But by doing so, the size of the proof generally grows exponentially.
In particular, there are classes of tautologies such that their proofs in sequent-
calculi including the cut-rule grow polynomially with their size, whilst in cut-free
sequent-calculi, their proofs grow exponentially. In this section, such a class will be
investigated.

In [Sta78], R. Statman studied a class of polynomial-size formulas and inves-
tigated their proof-lengths in sequent calculi. First we present the formulas con-
structed by Statman. Let Ai, Bi with i ≥ 1 propositional variables. We set:

fi :=
∧i

k=1(Ak ∨Bk)

g1 := A1 induction start

h1 := B1 induction start

gi+1 := fi → Ai+1 =
∧i

k=1(Ak ∨Bk) → Ai+1 induction step

hi+1 := fi → Bi+1 =
∧i

k=1(Ak ∨Bk) → Bi+1 induction step

kn := ((g1 ∨ h1) ∧ (g2 ∨ h2) ∧ . . . ∧ (gn ∨ hn)) → (An ∨Bn)
For example, we have

k2 = [(A1 ∨B1) ∧ (((A1 ∨B1) → A2) ∨ ((A1 ∨B1) → B2))] → (A1 ∨B1)

It is straightforward to see that the formulas kn are tautologies. R. Statman has
proven that in cut-free sequent-calculi, the lengths of the proofs for kn grow expo-
nentially, whereas in sequent-calculi including the the cut-rule, it is possible to find
proofs of polynomial length. Gulielmi has proven that kn can be derived within his
cut-free deep inference system, In contrast to usual sequent-calculi, in polynomial
time. We provide an analogous result for so-to-speak analytic calculus −̀e. So in
this respect, the strong rules of −̀e, yield an exponentially speed-up in the length
of proofs, compared to a analytic sequent-calculus.

8

Theorem 2 (Statman’s formulas can be proven with −̀e in polynomial
time). For Statman’s formula fn there exists a formal proof of length n(n + 1).

Proof: We provide a formal derivation of kn. To ease the readability and to save
space, we abbreviate (Ai ∨Bi), i.e., ¬(¬Ai ∧ ¬Bi), by ABi.

> ` ¬¬>
insertion

` ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ABn−1 ∧ABn ∧ ¬>)
it. ABn

` ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ABn−1 ∧ABn ∧ ¬ABn)
= ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ABn−1 ∧ ¬(¬An ∧ ¬Bn) ∧ ¬ABn)

2×it. of ABn−1

` ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ABn−1

∧¬(ABn−1 ∧ ¬An ∧ABn−1 ∧ ¬Bn) ∧ ¬ABn)
= ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ ¬(¬An−1 ∧ ¬Bn−1)

∧¬(ABn−1 ∧ ¬An ∧ABn−1 ∧ ¬Bn) ∧ ¬ABn)
4×it. of ABn−2

` ¬(AB1 ∧AB2 ∧ . . . ∧ABn−2 ∧ ¬(ABn−2 ∧ ¬An−1 ∧ABn−2 ∧ ¬Bn−1)
∧¬(ABn−2 ∧ABn−1 ∧ ¬An ∧ABn−2 ∧ABn−1 ∧ ¬Bn) ∧ ¬ABn)

...
2(n−1)×it. of AB1

` ¬(AB1

∧¬(AB1 ∧ ¬A2 ∧AB1 ∧ ¬B2)
∧¬(AB1 ∧AB2 ∧ ¬A2 ∧AB1 ∧AB2 ∧ ¬B2)

...
∧¬(AB1 ∧ . . . ∧ABn−1 ∧ ¬An ∧AB1 ∧ . . . ∧ABn−1 ∧ ¬Bn)
∧¬ABn)

2(n−1)×dc.

` ¬(AB1

∧¬(¬¬(AB1 ∧ ¬A2) ∧ ¬¬(AB1 ∧ ¬B2))
∧¬(¬¬(AB1 ∧AB2 ∧ ¬A2) ∧ ¬¬(AB1 ∧AB2 ∧ ¬B2))

...
∧¬(¬¬(AB1 ∧ . . . ∧ABn−1 ∧ ¬An) ∧ ¬¬(AB1 ∧ . . . ∧ABn−1 ∧ ¬Bn))
∧¬ABn)

= ¬(AB1

∧((AB1 → A2) ∨ (AB1 → B2))
∧((AB1 ∧AB2 → A2) ∨ (AB1 ∧AB2 → B2))

...
∧((AB1 ∧ . . . ∧ABn−1 → An) ∨ (AB1 ∧ . . . ∧ABn−1 → Bn))
∧¬ABn)

= kn

So we need 1+1+2(1+2+ . . .+(n− 1))+2(n− 1) = 2(1+ . . .+n) = n(n+1)
steps to derive fn. 2

9

6 Proofs of linear length

In [BZ93], Baaz and Zach show that adding the scheme of equivalence (Eq), i.e.,

(f ↔ g) → (h[f] ↔ h[g]) (Eq)

to an arbitrary hilbert-style calculus H for propositional logic allows to find proofs
of linear length, depending on the number of propositional variables in the formula.
More precisely, if Tn is the set of all tautologies in up to n propositional variables,
they show that there exists a linear function φ such that for all n and all A ∈ Tn it
satisfies H+EQ `φ(n) A.

In this section, by adapting the proof of [BZ93] for our system, it will be shown
that we can find a similar approximation for prooflengths. In contrast to [BZ93],
it is not needed to add new rules or axioms to our calculus. Instead, it suffices to
generalize the rules iteration, deiteration and double cut in a natural manner.

Recall the definition of the iteration rule: f [g ∧ h[i]] ` f [g ∧ h[g ∧ i]]. If f is
a formula with a subformula g, then each subformula i such that f has the form
f [g ∧ h[i]] is said to be receivable for the iteration of g. We now generalize
the rules of the calculus. This calculus will be denoted by `̀ .

gen. Iteration: If f [g] is a formula, then it is allowed to add to each context i
which is receivable for the iteration of g an arbitrary number of copies of g.

gen. Deiteration: Inverse direction of deiteration.
gen. Double Cut i): An arbitrary number of double negations may be removed

from a formula.
gen. Double Cut ii): An arbitrary number of double negations may be added to

a formula.

Some simple examples shall illustrate the rules. Consider the following proof, where
in each step, the outermost subformula A∧¬B is iterated (one time into the outer-
most context, two times into the context of D ∧ F). In this derivation, the iterated
copies of the subformula are underlined.

A ∧ ¬B ∧ C ∧ ¬(D ∧ F)
it.

` A ∧ ¬B ∧A ∧ ¬B ∧ C ∧ ¬(D ∧ F)
it.

` A ∧ ¬B ∧A ∧ ¬B ∧ C ∧ ¬(A ∧ ¬B ∧D ∧ F)
it.

` A ∧ ¬B ∧A ∧ ¬B ∧ C ∧ ¬(A ∧ ¬B ∧A ∧ ¬B ∧D ∧ F)

This derivation is now consolidated to one application of the generalized iteration
rule. But a ’nested’ application of the iteration-rule is not considered as generalized
iteration rule, i.e., although we have

A ∧ ¬B ∧ C ∧ ¬(D ∧ F)
it.

` A ∧ ¬B ∧A ∧ ¬B ∧ C ∧ ¬(D ∧ F)
it.

` A ∧ ¬B ∧A ∧ ¬(A ∧ ¬B ∧B) ∧ C ∧ ¬(D ∧ F)

the last formula is not obtained from the first formula with a single application of the
application of the generalized iteration rule, as in the second step, the subformula
A∧¬B is iterated into a context which was not created until the first step, i.e., into
a context which does not exist in the starting formula.

The generalized double cut rule is easier to understand.

A ∧ ¬B ∧ C ∧ ¬(D ∧ F)
gen. dc.

`̀ A ∧ ¬B ∧ ¬¬(C ∧ ¬¬¬(¬¬D ∧ F))

We can now prove that with `̀ we can find derivations of tautologies whose length
depend linearly from the number of the propositional variables in the tautology.

10

Theorem 3 (Proofs of linear length in the generalized calculus). If f is a
tautology with n different propositional variables, we have `̀24+14n f .

Proof: The proof is done by induction over n.
So, for the induction start, let f be a tautology without propositional variables.

For f 6∼ > and f 6∼ ¬>, f contains ¬¬> or ¬>∧¬> as subformula. We can succes-
sively replace subformulas ¬¬> by > (with the double cut rule) and subformulas
¬>∧¬> by ¬> (by deiterating one occurrence of ¬>). As both rules are equivalence
rules, it is easy to see that f is a tautology if and only if this procedure eventually
yields >.

This idea is captured by the ongoing proof, which is based on Yukami’s trick
([Yuk84]). In the formal derivation of f we have to construct, the manifold replace-
ments of ¬¬> by > of the double cut rule will be performed in one step by an
application of the generalized double cut rule. But the manifold replacements of
¬> ∧ ¬> by ¬> cannot be analogously be captured by one application of the gen-
eralized deiteration rule, as in the different applications of the deiteration rule take
place in different contexts (i.e., different occurrences of ¬> are used for deiterat-
ing other occurrences of ¬>). To overcome with this problem, instead of replacing
¬>∧¬> directly by ¬>, we first replace each occurrence ¬>∧¬> by ¬¬(¬>∧¬>)
with the generalized double cut rule. Then all occurrences of ¬(¬> ∧ ¬>) are re-
placed by > with the generalized deiteration rule, using a subformula ¬(¬> ∧ ¬>)
in the uppermost context.

In order to construct the formal derivation, we first define a mapping ∆(f),
which formalizes the three different modifications of formulas as follows:

1. If f contains a double negation ¬¬> as subformula, then ∆(f) is obtained from
f by removing the double negation, i.e.: For f [¬¬>] we set

∆(f [¬¬>]) := f [>] .

2. If f contains (¬>∧¬>) as subformula, then ∆(f) is obtained from f by replacing
this subformula by ¬¬(¬> ∧ ¬>), i.e.: For f [¬> ∧ ¬>] we set

∆(f [¬> ∧ ¬>]) := f [¬¬(¬> ∧ ¬>)] .

3. If f contains ¬(¬> ∧ ¬>) as subformula, then ∆(f) is obtained from f by
removing this subformula, i.e.: For f [¬(¬> ∧ ¬>)] we set

∆(f [¬(¬> ∧ ¬>)]) := f [>] .

Due to the discussion at the beginning of this proof, we know that f is a tautology
if and only if there is an n such that ∆n(f) = >.

Now let f be a tautology and n ∈ N with ∆n(f) = >. Let

f−1
d := ∆f ↔ (∆2f ↔ (∆3f ↔ . . . (∆n−1f ↔ >) . . .) ,

fd := f ↔ (∆f ↔ (∆2f ↔ . . . (∆n−1f ↔ >) . . .)
= f ↔ (f−1

d) and

f∆
d := ∆f ↔ (∆2f ↔ (∆3f ↔ . . . (∆nf ↔ >) . . .)

= ∆f ↔ (∆2f ↔ (∆3f ↔ . . . (> ↔ >) . . .)

Now we can derive f from >. We start with the construction of ¬(¬> ∧ ¬>), and
we derive fd ↔ fd as well.

11

>
gen. dc

`̀ ¬¬> ∧ ¬¬>
it.

`̀ ¬(¬> ∧ ¬>) ∧ ¬¬>
ins.

`̀ ¬(¬> ∧ ¬>) ∧ ¬(fd ∧ ¬>)
it.

`̀ ¬(¬> ∧ ¬>) ∧ ¬(fd ∧ ¬fd)
it.

`̀ ¬(¬> ∧ ¬>) ∧ ¬(fd ∧ ¬fd) ∧ ¬(fd ∧ ¬fd)
= ¬(¬> ∧ ¬>) ∧ (fd ↔ fd)
= ¬(¬> ∧ ¬>) ∧ ((f ↔ (f−1

d)) ↔ fd)

`̀3 ¬(¬> ∧ ¬>) ∧ ((f ↔ (f−1
d)) ↔ f∆

d)

The last step reflects the discussion at the beginning of the proof. It is carried out
each with one application of:

1. the generalized double cut insertion rule
2. the generalized double cut erasure rule
3. the generalized deiteration rule

The formulas f−1
d and f∆

d differ only in the innermost formula, which is > ↔ >
for f∆

d and > for f−1
d . We have

> ↔ > = ¬(> ∧ ¬>) ∧ ¬(> ∧ ¬>) ∼ ¬¬> ∧ ¬¬>

Thus the most inner formula > ↔ > of f∆
d can be replaced with the generalized

double cut rule by >. That is, we get:

¬(¬> ∧ ¬>) ∧ ((f ↔ (f−1
d)) ↔ f∆

d)
gen. dc.

`̀ ¬(¬> ∧ ¬>) ∧ ((f ↔ f−1
d) ↔ f−1

d)
era

`̀ (f ↔ f−1
d) ↔ f−1

d

According to Lem. 5, we can derive f from this formula within 14 steps. As we
needed 10 steps so far, we see that f can be derived with a total number of 24 steps
from >. This finishes the induction start.

Assume now we have shown that the Lemma holds for formulas with at most n
propositional variables. Now let f be a tautology with n+1 propositional variables,
let A be one of these variables. As we have

|= f ⇔ |= f [[>/A]] ∧ f [[¬>/A]] ,

there exists a formal derivation of f [[>/A]] ∧ f [[¬>/A]] with length 24 + 14n. From
this formula, we proceed as follows:

f [[>/A]] ∧ f [[¬>/A]]
dc.

`̀ ¬¬> ∧ f [[>/A]] ∧ f [[¬>/A]]
ins.

`̀ ¬(A ∧ ¬>) ∧ f [[>/A]] ∧ f [[¬>/A]]
it. of A

`̀ ¬(¬A ∧A) ∧ f [[>/A]] ∧ f [[¬>/A]]
dc.

`̀ ¬(¬A ∧ ¬¬A) ∧ f [[>/A]] ∧ f [[¬>/A]]
it. of f [[>/A]]

`̀ ¬(¬(A ∧ f [[>/A]]) ∧ ¬¬A) ∧ f [[>/A]] ∧ f [[¬>/A]]

12

it. of f [[¬>/A]]

`̀ ¬(¬(A ∧ f [[>/A]]) ∧ ¬(¬A ∧ f [[¬>/A]])) ∧ f [[>/A]] ∧ f [[¬>/A]]
era.

`̀ ¬(¬(A ∧ f [[>/A]]) ∧ ¬(¬A ∧ f [[¬>/A]]))
gen. it. of A

`̀ ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[¬>/A]]))
gen. it. of ¬A

`̀ ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[¬¬A/A]]))
gen. dc.

`̀ ¬(¬(A ∧ f [[A/A]]) ∧ ¬(¬A ∧ f [[A/A]]))
= ¬(¬(A ∧ f) ∧ ¬(¬A ∧ f))
era.

`̀ ¬(¬f ∧ ¬(¬A ∧ f))
era.

`̀ ¬(¬f ∧ ¬f)
deit.

`̀ ¬¬f
dc.

`̀ f

As we needed 14 further steps, we obtain > `̀24+14(n+1) f , thus we are done. 2

7 Further Research

This paper is a first step to the proof-theoretic foundations of Peirce’s calculus for
Alpha graphs. The calculus has powerful rules, and it has to be investigated whether
the results of this paper can be improved. Firstly, it is natural to ask whether the
deiteration rule is admissible as well. Kocura uses in [HK05] a system consisting
of the rules insertion, iteration, and double cut, but a proof whether this system
is complete is still missing. Secondly, one might ask whether the results of the last
section hold for the non-generalized calculus as well. I strongly suspect that this is
not the case. Consider the formula f := ¬¬>∧. . .∧¬¬> consisting of 2n subformulas
¬¬>. Then f can can be derived with ` within n + 1 steps as follows: First insert
a double cut, then in each step, iterate the whole formula derived so far. It is likely
that this is the optimal derivation of f , but so far, I did not succeed in proving that.

Besides these two questions, the results of the paper show that Peirce’s calculus
may be of interest for automated theorem proving, thus it should be investigated
further from a proof-theoretic point of view.

References

[Brü03] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[Bur91] Robert W. Burch. A Peircean Reduction Thesis: The Foundation of Topological
Logic. Texas Tech. University Press, Texas, Lubbock, 1991.

[BZ93] Matthias Baaz and Richard Zach. Short proofs of tautologies using the schema
of equivalence. In Egon Börger, Yuri Gurevich, and Karl Meinke, editors, CSL,
volume 832 of Lecture Notes in Computer Science, pages 33–35. Springer, Berlin
– Heidelberg – New York, 1993.

[Dau02] Frithjof Dau. An embedding of existential graphs into concept graphs with
negations. In Uta Priss, Dan Corbett, and Galia Angelova, editors, ICCS, volume
2393 of LNAI, pages 326–340, Borovets, Bulgaria, July, 15–19, 2002. Springer,
Berlin – Heidelberg – New York.

[Dau04] Frithjof Dau. Types and tokens for logic with diagrams: A mathematical ap-
proach. In Karl Erich Wolff, Heather D. Pfeiffer, and Harry S. Delugach, editors,
Conceptual Structures at Work: 12th International Conference on Conceptual
Structures, volume 3127 of Lecture Notes in Computer Science, pages 62–93.
Springer, Berlin – Heidelberg – New York, 2004.

13

[Dau06] Frithjof Dau. Mathematical logic with diagrams, based on the existen-
tial graphs of peirce. Habilitation thesis. To be published. Available at:
http://www.dr-dau.net, 2006.

[DMS05] Frithjof Dau, Marie-Laure Mugnier, and Gerd Stumme, editors. Common Se-
mantics for Sharing Knowledge: Contributions to ICCS 2005, Kassel, Germany,
July, 2005. Kassel University Press.

[Ham95] Eric M. Hammer. Logic and Visual Information. CSLI Publications, Stanford,
California, 1995.

[HB35] Weiss Hartshorne and Burks, editors. Collected Papers of Charles Sanders
Peirce, Cambridge, Massachusetts, 1931–1935. Harvard University Press.

[HK05] David P. Hodgins and Pavel Kocura. Propositional theorem prover for peirce-
logik. In Dau et al. [DMS05], pages 203–204.

[Liu05] Xin-Wen Liu. An axiomatic system for peirce’s alpha graphs. In Dau et al.
[DMS05], pages 122–131.

[Pap83] Helmut Pape. Charles S. Peirce: Phänomen und Logik der Zeichen. Suhrkamp
Verlag Wissenschaft, Frankfurt am Main, Germany, 1983. German translation
of Peirce’s Syllabus of Certain Topics of Logic.

[Pei35] Charles Sanders Peirce. MS 478: Existential Graphs. Harvard University Press,
1931–1935. Partly published in of [HB35] (4.394-417). Complete german trans-
lation in [Pap83].

[Pei92] Charles Sanders Peirce. Reasoning and the logic of things. In K. L. Kremer
and H. Putnam, editors, The Cambridge Conferences Lectures of 1898. Harvard
Univ. Press, Cambridge, 1992.

[PS00] Charles Sanders Peirce and John F. Sowa. Existential Graphs: MS 514 by
Charles Sanders Peirce with commentary by John Sowa, 1908, 2000. Available
at: http://www.jfsowa.com/peirce/ms514.htm.

[Rob73] Don D. Roberts. The Existential Graphs of Charles S. Peirce. Mouton, The
Hague, Paris, 1973.

[Rob92] Don D. Roberts. The existential graphs. Computers Math. Appl.., 23(6–9):639–
63, 1992.

[Sch60] Kurt Schütte. Beweistheorie. Springer, Berlin – Heidelberg – New York, 1960.
[Shi02a] Sun-Joo Shin. The Iconic Logic of Peirce’s Graphs. Bradford Book, Mas-

sachusetts, 2002.
[Shi02b] Sun-Joo Shin. Multiple readings in peirce’s alpha graphs. In Michael Anderson,

Bernd Meyer, and Patrick Olivier, editors, Diagrammatic Representation and
Reasoning. Springer, Berlin – Heidelberg – New York, 2002.

[Sow84] John F. Sowa. Conceptual structures: information processing in mind and ma-
chine. Addison-Wesley, Reading, Mass., 1984.

[Sow97] John F. Sowa. Logic: Graphical and algebraic. manuscript, Croton-on-Hudson,
1997.

[Sta78] Richard Statman. Bounds for proof-search and speed-up in predicate calculus.
Annals of Mathematical Logic, 15:225–287, 1978.

[vH03] Bram van Heuveln. Existential graphs. Presentations and Applications at:
http://www.rpi.edu/ heuveb/research/EG/eg.html, 2003.

[Yuk84] Tsuyoshi Yukami. Some results on speed-up. Ann. Japan Assoc. Philos. Sci.,
6:195–205, 1984.

[Zem64] Jay J Zeman. The Graphical Logic of C. S. Peirce. PhD thesis, University of
Chicago, 1964. Available at: http://www.clas.ufl.edu/users/jzeman/.

14

