
Concept Graphs without Negations:
Standardmodels and Standardgraphs

Frithjof Dau

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt, dau@mathematik.tu-darmstadt.de

Abstract In this article, we provide different possibilities for doing rea-
soning on simple concept(ual) graphs without negations or nestings. First
of all, we have on the graphs the usual semantical entailment relation
|=, and we consider the restriction ` of the calculus for concept graph
with cuts, which has been introduced in [Da02], to the system of concept
graphs without cuts. Secondly, we introduce a semantical entailment re-
lation |= as well as syntactical transformation rules ` between models.
Finally, we provide definitions for standard graphs and standard models
so that we translate graphs to models and vice versa. Together with the
relations |= and ` on the graphs and on the models, we show that both
calculi are adequate and that reasoning can be carried over from graphs
to models and vice versa.

1 Introduction

This paper is mainly based on two treatises: The dissertations of the author Dau
([Da02]) and of Prediger ([Pr98a]). In [Pr98a], Prediger developed a mathemat-
ical theory for simple concept graphs. In Predigers graphs, negation cannot be
expressed, so these graphs correspond to the existential-conjunctive fragment
of conceptual graphs or first order predicate logic (FOPL). Reasoning on these
graphs can be performed in two different ways: First of all, Prediger introduced a
sound and complete calculus which consists of fairly simple transformation rules.
Secondly, she assigned to each graph a corresponding standard model (and, vice
versa, to each model a corresponding standard graph). For graphs without generic
markers, Predigers standard models encode exactly the same information as the
respective graphs. Thus, for these graphs, the reasoning on graphs can be carried
over to the models.

In [Da02], the author extended the syntax of concept graphs by adding the
cuts of Peirce’s existential graphs. Cuts are syntactical devices which serve to
negate subgraphs. As negation can be expressed in concept graphs with cuts,
these graphs correspond to full FOPL (see [Da02]). For these graphs, a sound and
complete calculus is provided, too. This calculus is not a further development
of Predigers calculus, but it is based on Peirce’s calculus for existential graphs.
In particular, some of its transformation rules are fairly complex. In contrast
to concept graphs without negations, it turns out that the information which is



encoded by concept graphs with cuts cannot be encoded in standard models, so
the notion of standard models has to be dropped.

In this article, we bring together the ideas of Prediger and Dau for con-
cept graphs without negation (i. e. without cuts). First of all, on concept graphs
without cuts, we introduce a restricted version of the calculus for concept graphs
with cuts, where we have removed all rules where cuts are involved. Secondly,
we extend Predigers notions of standard graphs and standard models (the dif-
ferences to Predigers approach will be discussed in the next sections) such that
even for graphs with generic markers, their standard models will encode exacty
the same exactly the same information as the respective graphs. On the models,
we introduce a semantical entailment relation |= as well as transformation rules.
The latter can be seen as a kind of calculus which yields a relation ` between
models. It will turn out that the relations |=,` for graphs and for models and
the notions of standard models and standard graphs fit perfectly together.

2 Basic Definitions

In this section, we provide the basic definitions for this paper. The first four
definitions are directly adopted or slightly modified definitions which can be
found in [Pr98a] as well as in [Da02]. Definition 5 is a restricted version –which
suits for concept graphs without negation– of the calculus in [Da02]. We start
with the definitions of the underlying alphabet (which is called the support,
taxonomy or ontology by other authors) and of simple concept graphs.

Definition 1 (Alphabet).
An alphabet is a triple A := (G, C,R) of disjoint sets G, C, R such that

– G is a finite set whose elements are called object names,
– (C,≤C) is a finite ordered set with a greatest element > whose elements are

called concept names, and
– (R,≤R) is a family of finite ordered sets (Rk,≤Rk), k = 1, . . . , n (for an
n ∈ N) whose elements are called relation names. Let .= ∈ R2 be a special
name which is called identity.

On G
.
∪ {∗} we define an order ≤G such that ∗ is the greatest element G

.
∪ {∗},

but all elements of G are incomparable.

Definition 2 (Simple Concept Graphs).
A simple concept graph over A is a structure G := (V,E, ν, κ, ρ) where

– V and E are pairwise disjoint, finite sets whose elements are called vertices
and edges,

– ν : E → ⋃
k∈NV

k is a mapping (we write |e| = k for ν(e) ∈ V k),
– κ : V ∪ E → C ∪ R is a mapping such that κ(V ) ⊆ C, κ(E) ⊆ R, and all
e ∈ E with |e| = k satisfy κ(e) ∈ Rk, and

– ρ : V → G
.
∪ {∗} is a mapping.



The set of these graphs is denoted by CGA. If the alphabet is fixed, we sometimes
write CG. For the set E of edges, let Eid := {e ∈ E |κ(e) = .= } and Enonid :=
{e ∈ E | κ(e) 6= .= }. The elements of Eid are called identity-links. Finally set
V ∗ := {v ∈ V | ρ(v) = ∗} and V G := {v ∈ V | ρ(v) ∈ G}. The nodes in V ∗ are
called generic nodes.

These graphs correspond to the graphs in [Da02], where the cuts are removed.
Although they are similar, there are some important differences between these
graphs and the simple concept graphs as they are defined by Prediger in [Pr98a]:

First of all, in [Pr98a] Prediger assigned sets of objects instead of single
objects to vertices (i. e. in [Pr98a] we have ρ : V → P(G)

.
∪ {∗} instead of

ρ : V → G
.
∪ {∗}). For concept graphs with cuts, it is not immediately clear

what the meaning of a vertex is which is enclosed by a cut and which contains
more than one object. For this reason, in [Da02] and thus in this article, ρ assigns
single objects to vertices. The expressiveness of the graphs is not changed by this
syntactical restriction.

Identity is in [Pr98a] expressed by an equivalence relation θ only on the set
of generic vertices. In [Da02] and in this article, identity is expressed by identity
links on the set of generic and non-generic vertices. Thus the concept graphs
of this article have a slightly higher expressiveness than the concept graphs of
[Pr98a]. This has to be taken into account in the definition of standard models
and standard graphs, as well as in the calculus. To provide an example: Consider
an alphabet with C := {>, A,B} and G := {a, b}, where A,B are incompara-
ble concept names. In our approach, A: a B: b is a well-defined graph1

which expresses a proposition which cannot represented in Predigers approach.
This graph entails A: b B: a . Obviously, this entailment is based on the
unique meaning of identity. For this reason, we will have rules in our calculus
which capture the role of the identity relation and which allow to derive the
second graph from the first one. A derivation like this cannot be performed with
projections2 ([CM92]) or with the calculus presented in [Mu00].

The next two definitions describe the ‘contextual models’ which we consider.
These definitions appear in [Pr98a] as well as in [Da02] and are based on the
theory of Formal Concept Analysis (see [GW99]).

Definition 3 (Power Context Family).
A power context family ~K := (K0,K1,K2, . . .) is a family of formal contexts

Kk := (Gk,Mk, Ik) that satisfies G0 6= ∅ and Gk ⊆ (G0)k for each k ∈ N. Then
we write ~K := (Gk,Mk, Ik)k∈N0 . The elements of G0 are the objects of ~K. A
pair (A,B) with A ⊆ Gk and B ⊆ Mk is called a concept of Kk, if and only
1 In contrast to other authors, like Mugnier [Mu00], we allow that different object

names may refer to the same object, i.e. we do not adopt the unique name assump-
tion. The unique name assumption is needed when a graph shall be transformed into
its normal-form. This graph cannot be transformed into a normal-form and is not a
well-defined graph in the approach of Mugnier.

2 Moreover, as projections rely on normal-forms for graphs, they have further restric-
tions. See [Mu00].



if A = {g ∈ Gk | gIkn for all b ∈ B} and B = {m ∈ Mk | aIkm for all a ∈ A}.
Ext(A,B) := A is called extension of the concept (A,B), and Int(A,B) := B is
called intension of the concept (A,B). The set of all concepts of a formal context
Kk is denoted by B(Kk). The elements of

⋃
k∈N0

B(Kk) are called concepts,
and we set furthermore R~K :=

⋃
k∈NB(Kk), and the elements of R~K are called

relation-concepts.

To get a contextual structure over an alphabet, we have to interpret the
object-, concept- and relation-names by objects, concepts and relation-concepts
in a power context family. This is done in the following definition.

Definition 4 (Contextual Models).
For an alphabet A := (G, C,R) and a power context family ~K, we call the

disjoint union λ := λG ∪̇λC ∪̇λR of the mappings λG :G → G0, λC : C → B(K0)
and λR:R → R~K a ~K-interpretation of A if λC and λR are order-preserving,
and λC , λR satisfy λC(>) = >, λR(Rk) ⊆ B(Kk) for all k = 1, . . . , n, and
(g1, g2) ∈ Ext(λR( .=)) ⇔ g1 = g2 for all g1, g2 ∈ G0.3 The pair (~K, λ) is called
contextual structure over A or contextual model over A. The set of these con-
textual structures is denoted by CSA. If the alphabet is fixed, we sometimes write
CS.

The calculus for concept graphs with cuts consists of the following rules
(see[Da02]): erasure, insertion, iteration, deiteration, double cuts, generaliza-
tion, specialization, isomorphism, exchanging references, merging two vertices,
splitting a vertex, >-erasure, >-insertion, identity-erasure and identity-insertion.

Only the double-cut-rule allows to derive a concept graph with cuts from a
concept graph without cuts. The rules insertion and specialization can only be
applied if we have a graph with cuts. As we consider concept graphs without
cuts, we remove these three rules from the calculus and interpret the remaining
rules as rules for the system of concept graphs without cuts. So we have the
following definition (for examples, an explanation and a precise mathematical
definition for the rules, we refer to [Da02]):

Definition 5 (Calculus for Simple Concept Graphs).
The calculus for concept graphs over the alphabet A := (G, C,R) consists of

the following rules:
Erasure, iteration, deiteration, generalization, isomorphism, exchanging ref-

erences, merging two vertices, splitting a vertex, >-erasure, >-insertion, identity-
erasure and identity-insertion.

If Ga, Gb are concept graphs, and if there is a sequence (G1,G2, . . . ,Gn) with
G1 = Ga, Gb = Gn such that each Gi+1 is derived from Gi by applying one of
the rules above, we say that Gb can be derived from Ga and write Ga `pos Gb.

3 As Prediger does not consider identity links, the last condition does not appear in
her definition of contextual structures.



3 Contextual Structures: Standard Models and
Semantical Entailment

In this section, we will assign to a graph its standard model which encodes exactly
the same information as the graph. This is based on [Wi97] and has already done
by Prediger in Definition 4.2.5. of [Pr98a]. Remember that identity is in [Pr98a]
expressed by an equivalence relation θ only on the set of generic vertices, so
Prediger used the following approach: The set of objects of the standard model
consists of all object names G ∈ G and of all equivalence classes of θ. But we
can express identity between arbitrary, i. e. generic or non-generic, vertices, thus
we have to extend this idea. We start by defining an equivalence relation θG on
V ∪̇G, which is an appropriate generalization of Predigers θ.

Definition 6. Let G := (V,E, ν, κ, ρ) be a concept graph over A. We assume
that V and G are disjoint. Let θG be the smallest equivalence relation on V ∪̇G
such that

1. if ρ(v) = G ∈ G, then vθGG, and
2. if e ∈ E with ν(e) = (v1, v2) and κ(e) ≤ .=, then v1θGv2.

It is easy to see that two vertices which are equivalent must refer in each
model to the same object, i. e. we have the following lemma:

Lemma 1. Let G := (V,E, ν, κ, ρ) be a concept graph over A. If v1, v2 ∈ V with
v1θGv2, then ref(v1) = ref(v2) for each contextual structure (~K, λ) over A and
each valuation ref : V → G0 with (~K, λ) |= G[ref ].

The opposite direction of the lemma holds as well, i. e. we could characterize
θG by the condition in the lemma. This is not immediately clear, but it could
easily be shown with the results of this paper.

Now we can assign to each concept graph an appropriate standard model
which encodes exactly the same information as the graph.4

Definition 7 (Standard Model).
Let G := (V,E, ν, κ, ρ) be a concept graph over A. We define the standard

model of G as follows:
For G 6= ∅ or G 6= ∅,5 we first define a power context family ~KG by

4 This is possible because we consider only the existential-conjunctive fragment of
concept graphs (in particular we do not consider negations or disjunctions of propo-
sitions), so we have to encode only the information a) whether objects have specific
properties or whether objects are in a specific relation, b) whether objects exist with
specific properties, and c) the conjunction of informations like these. These are the
kinds of information which can be expressed in graphs (e.g. existential graphs or
concept graphs) in an iconical way, i. e. we encode in standard models exactly the
iconical features of concept graphs. For a deep discussion of this topic, we refer to
[Sh99].

5 As usual in logic, we only consider non-empty structures. For this reason, we have
to treat the case G = ∅ = G separately.



– GG
0 := {[k]θG | k ∈ V ∪̇G}, and GG

i := (GG
0 )i,

– MG
0 := C, and MG

i := Ri for 1 ≤ i ≤ n.
– For C ∈ C and g ∈ G0, we set gIG

0 C :⇐⇒
• ∃v ∈ V . g = [v]θG ∧ κ(v) ≤ C , or
• C = >.

– For Ri ∈ Ri and g1, . . . , gi ∈ G0, we set (g1, . . . , gi)IG
i Ri :⇐⇒

• ∃e = (v1, . . . , vi) ∈ E . g1 = [v1]θG ∧ . . . ∧ gi = [vi]θG ∧ κ(e) ≤ Ri , or
• i = 2 and .=≤ Ri ∧ g1 = g2 .

The mappings λG are defined canonically:

– λG
G (G) := [G]θG for all G ∈ G,

– λG
C (C) := µ(C) for all C ∈ C, and

– λG
R(R) := µ(R) for all R ∈ R.

If G = ∅ and G = ∅, let g be an arbitrary element. We define ~KG as follows:
~K0 := ({g}, {>}, {(g,>)}), ~K2 := ({(g, g)}, { .=}, {((g, g), .=)}), and for i 6= 0, 2,
let ~Ki := (∅, ∅, ∅). The mappings of λG are defined canonically, i. e. λ G

G := ∅,
λ G
C (>) := µ(>), and λ G

R ( .=) := µ( .=). All remaining concept- or relation-names
are mapped to the ⊥-concept (∅′′, ∅′) of the respective formal context.

The contextual structure (~KG, λG) is called standard model of G and is de-
noted by MG.6

It is not immediately clear that the definition above yields indeed a contextual
structure. Of course ~KG is a power context family. It remains to check that
λ := λG

G ∪̇λG
C ∪̇λG

R fulfills the conditions of Definition 4. This is done now.

1. We have to show that λG
C and λG

R are order-preserving. We only consider
the mapping λG

R (the case λG
C is done analogously). So let R1, R2 ∈ Ri and

(g1, . . . , gi) ∈ Ext(λG
R(R1)). If there is an e = (v1, . . . , vi) ∈ E which satisfies

g1 = [v1]θG ∧ . . . ∧ gi = [vi]θG and κ(e) ≤ R1, then we have κ(e) ≤ R2

as well, so, by Definition 4, we conclude (g1, . . . , gi) ∈ Ext(λG
R(R2)). If we

have i = 2, .=≤ R1 and g1 = g2, then we have .=≤ R2 as well, so, again by
Definition 4, we conclude (g1, g2) ∈ Ext(λG

R(R2)).
2. It is easy to see that λG

C (>) = > holds.
3. It remains to show: (g1, g2) ∈ Ext(λRG( .=)) ⇔ g1 = g2 for all g1, g2 ∈ G0.

The direction ’⇐=’ is easy to see: For g ∈ G0, the second condition for Ri
of Definition 4, applied to i := 2 and Ri := .= yields (g, g)IG

2
.=. In order

to show direction ’=⇒’, we assume that we have g1, g2 ∈ G0 and an edge
e = (v1, v2) ∈ E with g1 = [v1]θG, g2 = [v2]θG and κ(e) ≤ .=. Definition 6
yields v1θGv2, from which we conclude g1 = [v1]θG = [v2]θG = g2.

As all conditions of Definition 4 are fulfilled, we see that (~KG, λG) is in fact a
conctextual structure.

It is easy to see that each graph holds in its standard model, i. e. we have:
6 We writeMG instead ofMG, because the different contexts of ~KG and the mappings

of λG already have indices at the bottom.



Lemma 2. If G := (V,E, ν, κ, ρ) is a graph, then (~KG, λG) is a contextual struc-
ture over A. For refG := {(v, [v]θG) | v ∈ V }, we have (~KG, λG) |= G[refG].

In the following, we provide some examples for simple concept graphs (over
the alphabet ({a, b, c}, {A,B,C,>}, { .=}) with incomparable concept names A,
B, C and their standard models.

G1 := A : a
�� ��= B : b C : ∗ A : a C : ∗

MG1 := A B C >
{a, b, v1, v2, v4} × × ×
{v3} × ×
{v5} × ×

G2 := A : a
�� ��= B : b C : ∗

MG2 := A B C >
{a, b, v1, v2} × × ×
{v3} × ×

G3 := A : a
�� ��= B : b

MG3 := A B C >
{a, b, v1, v2} × × ×

G4 := A : a B : b C : ∗

MG2 := A B C >
{a, v1} × ×
{b, v2} × ×
{v3} × ×

G5 := A : a B : b

MG5 := A B C >
{a, v1} × ×
{b, v2} × ×

G6 := A : a

MG6 := A B C >
{a, v1} × ×
{b} ×

G7 :=

MG7 := A B C >
{a} ×
{b} ×

The well-known relation |= on graphs can be understood as follows: G1 |= G2

holds iff G1 contains the same or more information than G2. This idea can be
transferred to models as well. This yields the following definition:7

Definition 8 (Semantical Entailment between Contextual Structures).

Let Ma := (~Ka, λa) and Mb := (~Kb, λb) be two A-structures (with ~Kx =
(K x

0 , . . . ,K
x
n ) and K x

i = (G x
i ,M

x
i , I

x
i ), i = 1, . . . , n and x = a, b). We set

Ma |=Mb :⇐⇒ it exists a mapping f : G b
0 → G a

0 with:

1. For all G ∈ G: f(λ bG (G)) = λ aG (G) (i. e. f respects λG.)
2. For all g ∈ G b

0 and C ∈ C: g ∈ Ext(λ bC (C)) =⇒ f(g) ∈ Ext(λ aC (C))
(i. e. f respects λC).

3. For all ~g ∈ G b
i and R ∈ Ri: ~g ∈ Ext(λ bR(R)) =⇒ f(~g) ∈ Ext(λ aR(R))

where f(~g) = f(g1, . . . , gi) := (f(g1), . . . , f(gi)) (i. e. f respects λR).

We will sometimes write Ma |=f Mb to denote the mapping f , too.
7 See also [Wi02], where Wille defines in a different way the informational content of

a model.



We want to make the following remarks on standard models:

1. The direction of f is not surprising: It corresponds to the direction of projec-
tions between conceptual graphs (see [CM92]). 8 In fact, f can be roughly
understood as projection between models (instead of between graphs). But
note that projection between graphs is complete only under certain restric-
tions (e.g., on the normal form of one graph. But, as argued before Definition
3, not every graph can be transformed into a normal-form), but it will turn
out that projection between models is complete without further restrictions.
Thus, to evaluate whether a graph Ga entails a graph Gb, a sound and com-
plete approach is the following: First contruct the standard models MGa

and MGb , and then find out whether there is a ’projection’ f from MGb to
MGa .

2. Please note that the models on the right
are semantically equivalent, although
they have a different number of objects.
This is based on the fact that we can-
not count in existential-conjunctive lan-
guages (without negation, we cannot
express that we have different objects
with the same properties).

M1 :=
K

1
0 P >
g × ×

M2 :=

K
2
0 P >
g × ×
h × ×

3. Concerning the relation |= on the set
of graphs resp. on the set of contextual
structures, the graphs and their stan-
dard models above are ordered as fol-
lows:

G7

G6

G5

@@��

G3 G4

��@@

G1,G2

MG7

MG6

MG5
@@��

MG3 MG4
��@@
MG1 ,MG2

4. In [Pr98a], standard models are compared as well, but Prediger compares
only the restrictions of the incidence-relations to objects which are generated
by non-generic nodes. E.g. in Predigers approach, the standard models of the
graphs A : ∗ and B : ∗ are comparable, although they encode incompara-
ble information. Thus Predigers approach is strictly weaker than semantical
entailment between models.

The next theorem shows the main link between a graph and its standard
model. As Prediger has no concept of semantical entailment between models,
there is no corresponding theorem in [Pr98a].

Theorem 1 (Main Theorem for Graphs and their Standard Models).

8 Another comparison can be drawn to algebra: A Standard Model of a graph can
be compared with a free structure over a set of equations in an algebra, and ev-
ery algebra which fulfills the equations can be mapped homomorphic into the free
algebra.



Let G := (V,E, ν, κ, ρ) be a graph, MG := (~KG, λG) be its standard model
and M := (~K, λ) be an arbitrary contextual structure. Then we have

M |=MG ⇐⇒ M |= G .

Proof:

⇒: We have G
refG

−→ MG f−→M. Set ref := f ◦refG. We want to show that ref
is a valuation with M |= G[ref ]. First we have to check that the mapping
ref is indeed a valuation. So let v ∈ V G with ρ(v) = G ∈ G. We have

ref(v) = f(refG(v)) Def for val.= f(λ G
G (ρ(v)) Def 8= λG(ρ(v)) ,

thus ref is a valuation.
To show M |= G[ref ], we have to check that ref satisfies the vertex- and
edge-conditions of [Da02], Definition 10.3.
To see that all vertex-conditions are fulfilled, let v ∈ V be a vertex. Let
κ(v) = C ∈ C. From MG |= G[refG] we conclude refG(v) ∈ Ext(λ G

G (C)).
Now condition 2) for f yields ref(v) = f(refG(v)) ∈ Ext(λG(C)), hence ref
satisfies the vertex condition for v.
The edge-conditions are shown analogously.

⇐: We have a valuation ref : V → G0 (where G0 is the
set of objects in M = (~K, λ)) with M |= G(ref).
Furthermore we have the canonical valuation refG :
V → G G

0 (where G G
0 is the set of objects in MG)

with MG |= G(refG). Let (refG)−1 be an inverse
mapping of refG.

G

MG

M

��
��*

HHHHj ?

! f

ref

refG

We set

f := ref ◦ (refG)−1 ∪̇ {(λ G
G (G), λ(G)) | ¬∃v∈V. ρ(v) = G} .

It is easy to see that f is a function from GG
0 to G0. We have to check 1)–3)

of Definition 8.
1. If G ∈ G such that there is no v ∈ V with ρ(v) = G, then 1) is fulfilled

by definition of f . So we assume that there is a v ∈ V with ρ(v) = G,
hence refG(v) = λ G

G (G). Let vG := (refG)−1(λ G
G (G)). We have vθGvG,

hence ref(vG) L. 1= ref(v)
M|=G[ref ]

= λG(G) We conclude

f(λ G
G (G)) = ref((refG)−1(λ G

G (G))) = ref(vG) = λG(G) ,

thus 1) is fulfilled.
2. Let C ∈ C and g ∈ G G

0 with g ∈ Ext(λG
C (C)) = Ext(µ(C)). If C = >,

then 2) is fulfilled by definition of f . So we assume C < >. Then we have
a v ∈ V with g = [v]θG and κ(v) ≤ C. We set vg := (refG)−1(g), thus
we have vθGvg. Similar to 1), we have ref(vg) = ref(v). This yields

f(g) = ref(refG)−1(g)) = ref(vg) = ref(v) ∈ Ext(λC(κ(v))) .

From κ(v) ≤ C, hence Ext(λC(κ(v))) ⊆ Ext(λC(C)), we conclude 2).
3. Is shown analogously. 2



From the main theorem, we get the following corollary. The first equivalence
of the corollary corresponds to Theorem 4.2.6. in [Pr98a]. But in [Pr98a], we find
no result which can be compared to G1 |= G2 ⇔ MG1 |= MG2 . Again due to
the lack of the concept of semantical entailment between models, Prediger has
only proven an implication which is a weak variant of G1 |= G2 ⇒ MG1 |=MG2

Corollary 1. Let G1,G2 be two graphs. Then we have

G1 |= G2 ⇐⇒ MG1 |= G2 ⇐⇒ MG1 |=MG2 .

Proof:
The direction ‘⇒’ of the first equivalence is trivial, and the second equivalence

follows immediately from Theorem 1. So it remains to show that ‘⇐’ of the first
equivalence holds.

So letM = (~K, λ) be a contextual structure withM |= G1.
Theorem 1 yields a mapping f : G G1

0 → G0 such that
M |=f MG1 holds. We furthermore have a valuation ref1 :
V → G1 withMG1 |= G2[ref1]. We set ref := f ◦ref1 and
want to show that ref is a valuation with M |= G2[ref ].

G2

MG1

M

��
��*

H
HHHj ?

f

! ref

ref1

We have to check the vertex-conditions for ref , so let v ∈ V2 be a vertex. Let
C := κ(v). As ref1 fulfills the vertex-condition, we get ref1(v) ∈ Ext(λG1(C)).
Now condition 2) for f yields ref(v) = f(ref1(v)) ∈ Ext(λ(C)), which is the
vertex-condition for v.

The edge-conditions are checked analogously. 2

4 Standard Graphs

In the last section, we assigned to each graph a corresponding standard model
which contains the same information as the graph. In this section, we do the
same for the opposite direction: We assign to a model a standard graph which
contains the same information. This is done with the following definition.

Definition 9 (Standard Graphs).
Let M := (~K, λ) be a contextual structure. We define the standard graph of

M as follows:

1. For each g ∈ G0, let vg := > : ∗ be a new vertex (i. e. we set κ(vg) := >
and ρ(vg) = ∗).

2. For each g ∈ G with λG(G) = g ∈ G0, let vg,G be a
new vertex and eg,G a new edge. We set κ(vg,G) := >,
ρ(vg,G) := G, ν(e) := (vg, vg,G) and κ(e) := .= (i. e. we
add the vertex and edge on the right).

vg
�� ��> : G
.=

3. For each C ∈ C\{>} with g ∈ Ext(λC(C)), let vg,C be a
new vertex and eg,C a new edge. We set κ(vg,C) := C,
ρ(vg,C) := ∗, ν(e) := (vg, vg,C) and κ(e) := .= (i. e. we
add the vertex and edge on the right).

vg
�� �� C : ∗.=



4. For each R ∈ Ri\{
.=} with (g1, . . . , gi) ∈ Ext(λR(R)),

let eg1,...,gi,R be a new vertex. We set κ(eg1,...,gi,R) := R
and ν(e) := (g1, . . . , gi) (i. e. we add the edge on the
right).

vg1 vg2 . . . vgi

��H
HH
@@�� ��R

We denote this graph by G(~K,λ) or GM.9

In [Pr98a], Definition 4.2.15, we find a corresponding definition for Definition
9. But there is a crucial difference between Predigers approach and our approach:
In [Pr98a], Prediger assigns a standard graph to a power context family instead
to a contextual structure. Thus, she has first to define an alphabet which is
derived from the power context family, then she defines the standard graph over
this alphabet. Our approach is different: We fix an alphabet at the beginning
and consider only graphs and structures over this fixed alphabet.

To get an impression of standard models and standard graphs, we provide
a more extensive example. First we have to fix the alphabet. We set A :=
({a, b, c, d}, {A1, A2, B1, B2, C,E,>}, {R1, R2, S,

.=}), whereR1, R2, S are dyadic
relation names. The orderings on the concept- and relation-names shall be as fol-
lows:

For C :

A1

A2

B1

B1 C E

>
��
�
�� @@ PP

P

For R :
R1

R2 S
.=

We consider the following graph over A:

:* A :a B :b : c :C * :E *B :b

R S R

R

1 11

2 1

1

Below, we provide the standard model of this graph (the mappings λG, λC
and λR are not explicit given, as they can easily be obtained from the power
context family). We assume that the vertices of the graph are numbered from
the left to the right, starting with 1, thus the i-th vertex is denoted by vi.

9 GM is given only up to isomorphism, but we have the implicit agreement that
isomorphic graphs are identified.



K0 A1 A2 B1 B2 C E >
{a, b, v1, v3, v4} × × × × ×

{v2} ×
{c, v5, v6} × ×
{v7} × ×
{d} ×

K2 R1 R2 S
.
=

({v2}, {a, b, v1, v3, v4}) ×
({a, b, v1, v3, v4}, {c, v5, v6}) × × ×

({c, v5, v6}, {v7}) × ×
({v2}, {v2}) ×

({a, b, v1, v3, v4}, {a, b, v1, v3, v4}) ×
({c, v5, v6}, {c, v5, v6}) ×

({v7}, {v7}) ×
({d}, {d}) ×

The standard graph of this model is given below. In the left, we sketch which
vertices and edges are added by which step of Definition 9.

S

R

:* :*

B :*A :* A :* B :* :C *

: a : b

R

:*

R

R

:E *

R

:*

: c

:*

: d

1

11 2 2

2

2

1

2

step 3

step 2

step 4

step 1

If we translate a model to a graph and then translate this graph back into a
model, in general we do not get the same graph back, but at least a semantically
equivalent graph:

Lemma 3 (M and MGM are Semantically Equivalent).
Let A = (G, C,R) be an alphabet and let M be a contextual structure over A.

1. It holds M |=MGM and MGM |=M .
2. If M satisfies furthermore M0 = C and Mi = Ri for all i ≥ 1, then M and
MGM are even isomorphic.

Proof:
Let

f :=:=
{
M→MGM

g 7→ [vg]θGM

(with the denotation of Definition 9 for vg). It can easily be checked that f
is bijective, and that we have M |=f−1 MGM and MGM |=f M, hence 1 is
fulfilled. For 2, we have that for each i, the contexts Ki and K GM

i have the same
attributes, so the conditions which are satisfied by f yield that M and MGM

are isomorphic. 2



From 2. of Lemma 3 we conclude that each model M with M0 = C and
Mi = Ri for all i ≥ 1 is already isomorphic to a standard model of a graph.
Together with 1., we see that each class in the quasiorder (CS,|=) contains at least
one standard model (but this is not uniquely determined: Each class contains
infinitely many pairwise non-isomorphic standard models).

In the following, we will provide an corresponding result of the last lemma
for graphs, that is we will show that G and GMG are equivalent. In contrast to
the last lemma, we will prove that G and GMG are syntactically equivalent. As
we know from [Da02] that the calculus for concept graphs with cuts is sound, we
know that the restricted calculus `pos we consider in this paper is sound, too. In
particular, when we have shown that G and GMG are syntactically equivalent,
we know that are these graphs are semantically equivalent as well.

Before we prove the equivalence, we need a simple lemma.

Lemma 4.
Let G := (V,E, ν, κ, ρ) be a concept graph, let v1, v2 be two new vertices,

e1, e2 be two new edges, and let G′ := (V ′, E′, ν′, κ′, ρ′) be defined as follows:

– V ′ := V ∪̇{v1, v2}, E′ := E∪̇{e1, e2}, ν′ := ν∪̇{(e1, (v, v1)), (e2, (v, v2))}
– κ′ := κ|V \{v}∪̇E∪̇{(v,>), (v1,>), (v2, κ(v)), (e1,

.=), (e2,
.=)}, and

– ρ′ := ρ|V \{v}∪̇{(v, ∗), (v1, ρ(v)), (v2, ∗)}.

Then we have
G `pos G′ and G′ `pos G .

Proof:
We start with:

����
. . .@@
HH

C : g

Corollary 11.4. in [Da02]
yields:

����
. . .@@
HH

> : ∗
�� ��= C : g

Corollary 11.3. in [Da02]
yields:

����
. . .@@
HH

> : ∗
�� ��= C : ∗

�� ��= > : g

Lemma 11.5. in [Da02]
yields:

����
. . . @@

HH
> : ∗

@@

�� ��
��

�� ��= =

C : ∗ > : g

2

Now we are prepared to prove the syntactical equivalence of G and GMG .

Theorem 2 (G and GMG are Syntactically Equivalent).
Let G be a concept graph. Then we have

G `pos GMG and GMG `pos G .



Proof:
We will exemplify the proof with the example for standard graphs above,

that is, we start with

:* A :a B :b : c :C * :E *B :b

R S R

R

1 11

2 1

1

Let [v]θG ∩ V = {v1, . . . , vn}. With the rule ‘identity-insertion’ and with
Lemma 11.5 of [Da02], we can add or remove identity links such that there is an
identity link between vi, vj ∈ V ∩ [v]θG iff j = i+ 1. One possible result for our
example is:

B :b : c :C * :E *

S R

B :b:* A :a

R
R

1

1

11

2

1

Now we do the following:

1. Each vertex
����

. . .@@
HH

> : g is replaced by
����

. . .@@
HH

> : ∗
�� ��= > : g

2. Each vertex
����

. . .@@
HH

C : ∗ (C 6= >) is replaced by
����

. . .@@
HH

> : ∗
�� ��= C : ∗

3. Each vertex
����

. . .@@
HH

C : g is replaced with Lemma 4 by

����
. . .@@
HH

> : ∗
@@

�� ��
��

�� ��= =

C : ∗ > : g

4. For each G ∈ G with g /∈ ρ[V ] we add > : ∗
�� ��= > : g

For our example, we get:

S R
R

:*

R

:* :* :* :*

:E *:C *: cB :* : bB :* : bA :* : a

:* :* :*

: d

1

1

2

111

For each class [v]θG := {v1, . . . , vn}, we merge v1 into v2, v2 into v3, . . ., vn−1

into vn. After this step, each class [v]θG corresponds to exactly one vertex in the
graph we have constructed so far. Let W be the set of these vertices.

In our example, we get:



B :* : b B :* : b

:*

A :* : a

:* :*

:E *

:*

: c :C *

S
R R

R

:*

: d1 11

2 1

1

Now we erase all repeated instances of structures
�� ��= C : ∗ and of

structures
�� ��= > : g which are linked to the same vertex w = > : ∗ with

w ∈ W . Analogously, all repeated instances of edges are erased. The opposite
direction can be carried out with the iteration-rule.

B :* : b

:*

A :* : a

:* :*

:E *

:*

: c :C *

S
R R

R

:*

: d11

2 1

1

For each vertex w ∈W , we now do the following: If a structure
�� ��= C : g

is linked to w and if C < D < >, we add a structure
�� ��= D : g which is

linked to w as well (supposed the new structure did not exist already). Analo-
gously, if we have an edge e which is incident with vertices from W and which
is labelled with the relation name R := κ(e), and if S is an relation name with
R < S, we add an edge f with κ(f) = S and f |1 = e|1, . . . , f |k = e|k (with
|e| = |f | = k), supposed an edge like this did not exists already. This can be
done with an application the iteration- and of the generalization-rule. The op-
posite direction can be carried out with the erasure-rule.

:* :* :*

:E *

:*

: c :C *

S
R R

R

B :* : bA :* : a

R
R

:*

: dA :* B :*

2 1

1

11

2

2

2 2

It is easy to see that the resulting graph is GMG . As all steps in the proof
can be carried out in both directions, we are done. 2

The class of all graphs over a given alphabet A, together with the semantical
entailment relation |= is a quasiorder. The same holds for the class of all models.
With the last theorem, we are now prepared to show that these quasiorders are
isomorphic structures. More precisely, we have the following corollary:



Corollary 2 ((CS,|=) and (CG,|=) are isomorphic quasiorders).
The mappings M 7→ GM and G 7→ MG are, up to equivalence, mutually

inverse isomorphisms between the quasiordered sets (CS,|=) and (CG,|=).

Proof: As we know that `pos is sound, the last theorem yields that G |= GMG

and GMG |= G hold as well. We have furthermore

M1 |=M2
L. 3⇐⇒MGM1 |=MGM2

C. 1⇐⇒ GM1 |= GM2 .

These results together with Lemma 3 and Corollary 1 yield this corollary. 2

5 Transformation-Rules for Models

We still have to show that `pos is complete. Although we have the last corollary,
this cannot be derived from the results we have so far.

In order to prove the completeness of `pos, we will introduce four transforma-
tion rules for models:10 removing an element, doubling an element, exchanging
attributes, and restricting the incidence relations. This rules form a calculus for
models, which will be denoted by `. We will show that `pos for graphs and ` for
models are complete. The main idea is the following: If we have two modelsMa

and Mb with Ma |= Mb, we will show that Ma can successively transformed
to Mb with the rules for the models, and each transformation carries over to
the standard graphs, i. e. we get simultaneous GMa `pos GMb . This is enough
to prove the completeness of `pos as well.

In the following, we will define the transformation rules for models and show
that each rule is sound in the system of models, and that it carries over to the
set of graphs, together with the calculus `pos.

Definition 10 (Removing an Element from a Contextual Structure).
LetM := (~K, λ) be a contextual A-structure and let g ∈ G0\λG [G]. We define

a power context family ~K′ as follows:

1. G′0 = G0\{g}, G′i = Gi ∩ (G′0)i for all i ≥ 1,
2. M ′i = Mi for all i,
3. I ′i = Ii ∩ (G′i ×Mi) for all i.

For the contextual structure M := (~K′, λ) , we say that M′ is obtained from M
by removing the element g.

Lemma 5 (Removing an Element).
Let M := (~K, λ) be a model, let M′ := (~K′, λ′) be obtained from M by

removing the element g ∈ G0. Let Ma := (~Ka, λa) be a model, let f : G a
0 → G0

with g /∈ f [G a
0 ] and M |=f Ma, and id : G0\{g} → G0 the identity-mapping.

Then we have M′ |=f Ma , M |=idM′ and GM `pos GM′

10 We have the implicit agreement that isomorphic models are identified. Isomorphism
between power context families and between models is defined as usual.



Proof:
It is easy to check that we have M′ |=f Ma and M |=idM′.
With the denotations from Definition 9), GM′ can be derived from GM by

easing all edges vg is incident with, by erasing all vertices and edges vg,G and
eg,G with G ∈ G and λG(G) = g, by erasing all vertices and edges vg,C and eg,C
with C ∈ C and g ∈ Ext(λC(C)), and by erasing vg. 2

Definition 11 (Doubling of an Element in a Contextual Structure).
LetM := (~K, λ) be a contextual A-structure and let g, g′ ∈ G0. For each tuple

~h = (g1, . . . , gi) ∈ Gi, we set ~h[g′/g] := (g′1, . . . , g
′
i) with g′j :=

{
gj gj 6= g
g′ gj = g

.

If M′ := (~K′, λ′) is a contextual structure over A such that there is a g ∈ G0

with

1. G′0 = G0∪̇{g′} for a g′ /∈ G0 and G′i = Gi∪̇{~h[g′/g] |~h ∈ Gi} for all i ≥ 1,
2. M ′i = Mi for all i,
3. I ′0 = I0∪̇{(g′,m) | gI0m}, and I ′i = Ii∪̇{(~h[g′/g],m) |~hIim} for all i ≥ 1,
4. λ′G fulfills λ′G(G) = λG(G) for all G ∈ G with λG(G) 6= G, and for all G ∈ G

with λG(G) = G we have λ′G(G) ∈ {g, g′},
5. λ′C(C) = ( (Int(λC(C))I

′
0 , Int(λC(C)) ) for all C ∈ C, and

6. λ′R(R) = ( (Int(λR(R))I
′
i , Int(λR(R)) ) for all R ∈ Ri,

then we say that M′ is obtained from M by doubling the element g.

As the definition of doubling an element is fairly technical, we provide an
example for this rule. Let A := ({a, b, c}, {A,B,>}, {R, .=}), where R is a 4-ary
relation name, and let the following contextual structureM over A be given (we
have added an additional column to show how the mapping λG assigns object
names to objects):

λG

a, b
c

K0 A B C >
g × × ×
h × ×

K2
.=

(g, g) ×
(h, h) ×

K4 R

(g, h, g, h) × .

Then the following contextual structure is one of three possible structures
which can be obtained from M by doubling the element g:

λG

a
b
c

K0 A B C >
g × × ×
g′ × × ×
h × ×

K2
.=

(g, g) ×
(g′, g′) ×
(h, h) ×

K4 R

(g, h, g, h) ×
(g′, h, g′, h) × .

As we loose the information λG(a) = λG(b), we see that this contextual
structure contains less information than M.

Furthermore we note that if (~K′, λ′), (~K′′, λ′′) are two contextual structures
which are obtained from a contextual structure (~K, λ) by doubling the element
g ∈ G0, then they can (up to isomorphism) only differ between λ′G and λ′′G .



Lemma 6 (Doubling an Element).
Let M := (~K, λ) be a model and let M′ := (~K′, λ′) be obtained from M by

doubling the element g ∈ G0. Then we have M |=M′ and GM `pos GM′ .If
we have a model Ma := (~Ka, λa) with M |= Ma, then we can chose M′ such
that we have M′ |=Ma.

Proof:
Let g′ ∈ G′0 be the new element which is obtained from doubling g ∈ G0,

i. e. G′0 = G0∪̇{g′}. It is easy to see that f ′ : G′0 → G0 with f ′|G0 = id and
f ′(g′) = g fulfills all conditions of Definition 8, i. e. we have M |=f ′ M′.

Now let fa : G a
0 → G0 be a mapping withM |=f Ma. Let f ′a be an arbitrary

mapping with f ′a(h) = fa(h), if fa(h) 6= g, and f ′a(h) ∈ {g, g′}, if fa(h) = g. Now
condition 4. of Definition 11 enables us to chose λ′G fromM′ such that condition
1. of Definition 8 is satisfied. Conditions 2. and 3. of Definition 8 are trivially
satisfied. So we have M′ |=f ′a M

a.
It remains to show that GM `pos GM′ holds. We will exemplify the proof

with the example after Definition 11, that is, we start with

:C *: a : b : c

:* :*S

* *A B: :

1

3

2

4

We consider the subgraph which contains the following vertices and edges
(we use the denotation of Definition 9):

1. vg, all vg,G and eg,G (with G ∈ G and λG(G) = g), all vg,C and eg,C (with
C ∈ C and g ∈ Ext(λC(C)).

2. All edges eg1,...,gi,R such that gj = g for one j (with R ∈ R and (g1, . . . , gi) ∈
Ext(λR(R))). The set of these edges shall be denoted by F .

3. All vertices vh which are incident with an edge e ∈ F . The set of these
vertices shall be denoted by W .

This subgraph is iterated, and an new identity link is inserted between w and
its copy for each w ∈ W .11 The copies of the vertices vg,G and edges eg,G will
be denoted by v′g,G and e′g,G, respectively. For our example, we get:

:C *: a : b* *A B: :

:* :*S :*

: a : b* *A B: :

S :*

: c

1

3

2

4

12

4 3

11 Using the technical implementation of the iteration-rule in Definition 11.1. of [Da02],
we insert an identity link between (w, 1) and (w, 2).



For every w ∈ W , the copy of w is merged ‘back’ into w. For our example,
we get:

:C *: a : b* *A B: :

:*

: a : b

:*S S :*

: c * *A B: :

1

3

2

4

2

4

1

3

For g, we erase all vertices vg,G and edges eg,G, where λ′G(G) 6= g. Analogously
for g′, we erase all vertices v′g,G and edges e′g,G, where λ′G(G) 6= g′. For our
example, we obtain the following graph:

:C *

:* :*S S :*

: b: a* *A B: : : c * *A B: :

2

4

1

3

1

3

2

4

This is GM′ . 2

Definition 12 (Restricting the Incidence Relations).
LetM := (~K, λ) be a contextual A-structure. IfM′ := (~K′, λ) is a contextual

structure over A with

G′i = Gi for all i, M ′i = Mi for all i, and I ′i ⊆ Ii for all i ,

then we say that M′ is obtained from M by restricting the incidence relations.

Lemma 7 (Restricting the Incidence Relations).
If M′ := (~K′, λ) is obtained from M := (~K, λ) by restriction the incidence

relations, we have M |=idM′ and GM `pos GM′ .

Proof:
It is easy to see that GM′ is a subgraph of GM, hence GM′ can be derived

from GM by erasing all edges and vertices which are not in GM′ . 2

Definition 13 (Exchanging Attributes and Standardization).
LetM := (~K, λ) be a contextual A-structure. IfM′ := (~K′, λ′) is a contextual

A-structure which satisfies

1. G′i := Gi for all i,
2. gI0λC(C)⇐⇒ gI ′0λ

′
C(C) for all g ∈ G0 and C ∈ C,

3. ~gIiλR(R)⇐⇒ ~gI ′iλ
′
C(R), for all i ≥ 1, ~g ∈ Gi and R ∈ Ri, and

4. λ′G := λG,

then we say that M′ is obtained from M by exchanging attributes ofM. If M′
additionally satisfies M ′0 := C and M ′i := Ri for all i ≥ 1, then we say that M′
is obtained from M by standardization of M.



This rule is the only rule which does not weaken the informational content
of a model. In particular, it can be carried out in both directions.

Lemma 8 (Exchanging Attributes and Standardization).
If M′ := (~K′, λ′) is obtained from M := (~K, λ) by exchanging attributes, we

have M |=id M′ , M′ |=id M , and GM = GM′ .Furthermore exists a
standardization of M for each contextual structure M.

Proof: Trivial
The four rules form a calculus for models, i. e. we have the following definition:

Definition 14 (Calculus for Contextual Structures).
The calculus for contextual structures over the alphabet A := (G, C,R) con-

sists of the following rules:
Removing an element, doubling an element, exchanging attributes, and re-

stricting the incidence relations.
If Ma, Mb are two models, and if there is a sequence (M1,M2, . . . ,Mn)

with M1 = Ma and Mb = Mn such that each Mi+1 is derived from Mi by
applying one of the rules of the calculus, we say that Mb can be derived from
Ma, which is denoted by Ma ` Mb.

Now we are prepared to show that the transformation rules for models are
complete and respected by the construction of standard graphs.

Theorem 3 (` is Complete and Respected by Standard Graphs).
Let Ma := (~Ka, λa), Mb := (~Kb, λb) be two contextual structures such that

Ma |=Mb. Then we have Ma ` Mb and GMa `pos GMb .

Proof:
First Lemma 8 allows us to assume w.l.o.g. that Ma and Mb are standard-

ized, i. e. that we have M a
0 = M b

0 = C and M a
i = M b

i = Ri for all i ≥ 1.
Let f : G b

0 → G a
0 with Ma |=f Mb.

Assume that f is not injective, i. e. there are g1, g2 ∈ G b
0 with f(g1) = f(g2).

Then we can double f(g1) ∈ G a
0 to obtain from Ma a contextual model Mc

with a new element h. Similar to the proof of Lemma 6, we can choose λcC such
that the a mapping f ′ : G b

0 → G c
0 with f ′|G b

0 \{g2} = f and f(g2) = h which
fulfills Mc |=f ′ M. If f ′ is not injective again, we repeat this step as often as
necessary until we finally obtain a contextual structure M1 and an injective
mapping f1 : G b

0 → G 1
0 with M1 |=f1 Mb. As M1 is obtained from Ma by

doubling several elements, we have Ma ` M1 by definition of `, and Lemma 6
yields GMa `pos GM1 .

If f1 is not surjective, we can remove with the rule rule ’removing an element’
gradually all objects g ∈ G 1

0 \f1[G b
0 ] from M1 to obtain from M1 a contextual

structureM2 withM1 ` M2. Lemma 5 yields GM1 `pos GM2 andM2 |=f1 Mb.
Furthermore we now have that f2 is bijective.

It is clear that isomorphic contextual structures yield isomorphic standard
graphs, so we can finally assume that f is the identity-mapping, in particular



we have G 2
0 = G b

0 (remember that have the implicit agreement that isomorphic
models are identified).

Conditions 1.–3. of Definition 8, which are satisfied by id, can now be stated
as follows:

1. For all G ∈ G we have λ bG (G) = λ aG (G),
2. C = M 2

0 = M b
0 , and for all C ∈ C we have CI

2
0 ⊆ CI b0 , and

3. for i ≥ 1, we have Ri = M 2
i = M b

i , and for all R ∈ Ri we have RI
2
i ⊆ RI bi .

Now it is easy to see that Mb can be obtained from M2 by restricting the
incidence relations, thus Lemma 7 yields M2 ` Mb and GM2 `pos GMb .

As `pos (for graphs) and ` (for models) are transitive, we concludeMa ` Mb

and GMa `pos GMb . 2 This theorem yields that the calculus `pos on the
graphs is complete as well:

Corollary 3 (Both Calculi are Complete).
Let M1,M2 be models and G1,G2 be graphs. We have:
M1 |=M2 ⇐⇒ M1 ` M2 and G1 |= G2 ⇐⇒ G1 `pos G2 .

Proof:
The direction ’⇐’ of the first equivalence follows immediately from Lemmata

6, 5, 8, and 7, and the direction ’⇒’ is a part of Theorem 3.
The direction ’⇐’ of the second equivalence is already proven in [Da02], so

it remains to show ’⇒’. We have:

G1 |= G2
C. 1⇐⇒MG1 |=MG2 C. 2=⇒ GMG1 |= GMG2

T. 2⇐⇒ G1 |= G2 ,

thus we are done. 2

6 Conclusion

In Prediger ([Pr98a]), the notion of standard models is adaquate only for concept
graphs without generic markers. For concept graphs with generic markers, a
standard model of a graph may encode less information than the graph. Thus,
in this case, the reasoning on concept graphs cannot be carried over to the
models completely. This is a gap we have bridged with our notion of standard
models, which extends Predigers approach. Moreover, reasoning on models can
be carried out in two different ways: By the semantical entailment relation |=
on models (see Definition 8), and by transformation rules between models (see
Section 5).

In [Da02], an adaquate calculus for concept graphs with cuts is provided.
Thus, if we have two concept graphs without cuts Ga and Gb with Ga |= Gb,
we have a proof for Ga ` Gb, that is: We have a sequence (G1,G2, . . . ,Gn) with
G1 = Ga, Gb = Gn such that each Gi+1 is derived from Gi by applying one of the
rules of the calculus. But now we have even more: From Corollary 3, we conclude
that we can find a proof (G1,G2, . . . ,Gn) such that all graphs G1, . . . ,Gn are
concept graphs without cuts. This result cannot be directly derived from [Da02].

In this sense, this work is a completion of both [Da02]) and [Pr98a].
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