
Nested Concept Graphs with Cuts:
Mathematical Foundations

Frithjof Dau, Joachim Hereth Correia

Technische Universität Darmstadt, Fachbereich Mathematik
Schloßgartenstr. 7, D-64289 Darmstadt, {dau,hereth}@mathematik.tu-darmstadt.de

Abstract. Conceptual graphs (CGs) have been developed as a graphic rep-
resentation system for logic with the very goal to be humanly readable and
understandable. They are designed to serve in different fields, one of them
is information extraction. The best example for this is querying (relational)
databases. There are different symbolic query languages, but these languages
got a reputation of either being to restricted or to difficult to learn. Using
CGs for querying relational databases, we can cope with this problem: As
argued in [DH03]), nested CGs cover the whole expressiveness of SQL2,
including negation and set functions, while being still comprehensible.
In this paper, we provide the first steps towards a mathematical foundation
for a system of CGs which are suited to query databases. First we define their
syntax. Next we define contextual models which extend the notion of power
context families such that nested relations, which will be used to model the
set functions of SQL, can be implemented. Finally, we define the semantics
by showing how nested concept graphs are evaluated in the models.

1 Introduction

Connecting conceptual graphs to query relational databases is a self-suggesting
idea (e. g., see [EGSW00, EG01]). In [DH03], we provide a couple of examples how
queries can be formulated by graphs (which are provided as diagrams) instead of
SQL-statements. In this article, we start to work out an appropriate mathematical
foundation for these graphs.

The graphs of [DH03] are in two respects an extension of simple concept graphs with
cuts of [Da02]. The first main difference is that the graphs herein considered do not
form propositions (which can be evaluated in models) as the graphs of [Da02] do, but
they describe relations which are built up from ‘atomar’ or predefined relations. This
is done by a fairly simple syntactical and semantical extension of concept graphs
with cuts: The vertices of the graphs in [DH03] can have query-marks ?i, i ∈ N as
references. If a graph contains query vertices with the references ?i, 1 ≤ i ≤ n, then
it describes the relation of all n-tuples (g1, . . . , gn) of objects gi which can replace
the appropriate query markers ?i such that the graph evaluates to true in a given
model. Simple concept graphs with cuts and query vertices can directly be compared
with the relation graphs of Peirce, which are extensively studied by Burch ([Bu91]),
and, inspired by the work of Burch, by Wille ([Wi01]) and Pollandt ([Po02]).

The next difference between the graphs in this article and the simple concept graphs
with cuts of [Da02] is driven by the set functions (like COUNT, SUM or AVG) of SQL.
Set functions can be understood as a kind of iterated relations, i. e. of relations
such that the places of a relation can stand again for relations (and not only for
objects of the domain we consider). In accordance to the terminology of existential
or conceptual graphs, we will call relations like these nested relations. So we have to
extend the syntax and semantics of simple concept graphs with cuts to the possibility

to describe nested relations. As said in [DH03], the main approach for this is the
idea of hypostatic abstractions (HAs) of Peirce (see [Pe35]) and their syntactical
implementation in existential graphs by contexts. Semantically and very briefly, a
hypostatic abstraction occurs if a whole set or class of objects of our domain (our
universe of discourse) is considered to be a new, singular object of our consideration
on its own. So, in our case, when a relation can occur as an object in a tuple of
another relation, the first relation is understood as an object on its own, so it
should be described by a HA. Syntactically, we need in concept graphs with cuts
a syntactical device which groups the elements (vertices, edges, cuts) of the graph
to classes which describe different levels of hypostatic abstractions. In order to do
this, we have two possibilities to implement HAs in graphs: Either we introduce a
new syntactical device for them (similar to cuts), or we extend the vertices to allow
nestings, i. e. we allow that subgraphs may be written inside vertices. We decided
to use the second approach for a couple of reasons:

– It is better to avoid a new device to keep the syntactical overhead low.
– When using vertices as HAs, i. e. nested relations, we can use the references

of the vertices to describe the nested relations (e.g. we can say ’there exists a
nested relation with . . .’ or ’AVG is a HA with . . .’)

– This approach is used in conceptual graphs as well.

So we extend the definition of simple concept graphs with cuts in order to allow
nestings of vertices. That is:

We can scribe graphs or part of graphs into vertices. A vertex is
a hypostatic abstraction if and only if it contains another graph. (∗)

This main idea, although it seems to be natural, will imply a couple of conclusions,
particularly the non-trivial direction ’=⇒’.

The resulting graphs will be called nested concept graphs with cuts or, in this article,
nested concept graphs for short (but this is only a short-cut: The graphs of this
paper should not be mistaken with the nested concept graphs of [Pr98] which do
not allow negations and which have a different semantical background). In these
graphs, simple vertices (i. e. vertices which are no HAs) will be used to denote
’ground’ objects of our domain and their types, i. e. concepts. A HA h will be used
to denote a relation, which is described by the subgraph enclosed by h.1

In the next sections, we describe the mathematical foundations for nested concept
graphs with cuts. In the first two sections, we start with the syntactical implemen-
tation. In the third section, we describe the appropriate models and the evaluation
of nested concept graphs with cuts in these models. Finally, we provide a definition
of the Φ-operator which maps nested concept graphs to set descriptions based on
first order predicate logic.

2 Nested Relational Graphs

In this section, we define the underlying structure of nested concept graphs with
cuts (ncgwc). It is important to note that –according to (∗)– we can already see
from the structure, not from the (later introduced) labelling of vertices and edges,
whether a vertex is a simple vertex or a HA.
1 So relations occur twice: As edges, which can be understood as pre-defined relations,

and as HAs, which can be understood as post-defined relations, built from objects, types
and predefined relations.

Definition 1. A structure (V,E, ν,>, Cut, area) is called a nested relational graph
with cuts if

– V , E and Cut are pairwise disjoint, finite sets whose elements are called ver-
tices, edges and cuts, respectively,

– ν : E → ⋃
k∈NV

k is a mapping,
– > is a single element, called the sheet of assertion, and
– area : V

.
∪ Cut

.
∪ {>} → P(V

.
∪ E

.
∪ Cut) is a mapping such that

a) area(k1) ∩ area(k2) 6= ∅ ⇒ k1 = k2 for k1, k2 ∈ V
.
∪ Cut

.
∪ {>}

b) V
.
∪ E

.
∪ Cut =

⋃
{area(k) | k ∈ V

.
∪ Cut

.
∪ {>}},

c) x /∈ arean(x) for each x ∈ V
.
∪ {>}

.
∪ Cut and n ∈ N

(with area0(x) := {x} and arean+1(x) :=
⋃
{area(y) | y ∈ arean(x)}).

For an edge e ∈ E with ν(e) = (v1, . . . , vk) we define |e| := k and ν(e)
∣∣
i

:= vi.
Sometimes, we will write e

∣∣
i

instead of ν(e)
∣∣
i
, and we will write e = (v1, . . . , vk)

instead of ν(e) = (v1, . . . , vk). We set E(k) := {e ∈ E | |e| = k}.
For v ∈ V we set Ev := {e ∈ E | ∃ i.ν(e)

∣∣
i

= v}. Analogously, for e ∈ E we set
Ve := {v ∈ V | ∃ i.ν(e)

∣∣
i

= v}.
We set HA := {v ∈ V | area(v) 6= ∅}. The elements of HA are called hypostatic
abstractions.2 The elements of V \HA are called simple vertices.

The elements of Cut
.
∪ HA

.
∪ {>} are called contexts. As every x ∈ V

.
∪ E

.
∪ Cut

is directly enclosed by exactly one context k ∈ Cut
.
∪ HA

.
∪ {>}, we can write

k = area−1(x) for every x ∈ area(c), or more simple and suggestive: k = ctx(x).

A first, trivial property of the mapping area is provided by the next lemma.

Lemma 1. Let (V,E, ν,>, Cut, area) be a nested relational graph with cuts, let
c ∈ Cut

.
∪ HA

.
∪ {>} be a context, and let m 6= n two different natural numbers.

Then we have aream(c) ∩ arean(c) = ∅.

Proof: Assume the lemma does not hold. Let n,m ∈ N with aream(c)∩arean(c) 6= ∅
such that n + m is minimal. If m = 0, we have an x ∈ area0(c) ∩ arean(c) =
{c} ∩ arean(c) in contradiction to clause a) for area in Definition 1. So we have
m > 0. Analogously, we get n > 0.

Now we conclude that there are contexts d, e with x ∈ area(d), d ∈ aream−1(c)
and x ∈ area(e), d ∈ arean−1(c). Using clause a) for area in Definition 1, we get
d = e. So we have d ∈ aream−1(c) ∩ arean−1(c), a contradiction to the minimality
of m+ n. 2

NCGwCs will be constructed from nested relational graph with cuts by additionally
labelling the vertices and edges with names. There is a crucial difference between
concept graphs and most other languages of logic: Usually, the well-formed formulas
of a language are built up inductively. In contrast to that, nested concept graphs
with cuts are defined in one step. The structure of a formula in a inductively de-
fined language is given by its inductive construction. Nested concept graphs bear
a structure as well: Similar to simple relational graphs with cuts, a context k of
a relational graph with cuts and nestings may contain other contexts l in its area
(i. e. l ∈ area(k)), which in turn may contain further contexts, etc. Is has to be
expected that this idea induces an order ≤ on the contexts which should be a tree,
having the sheet of assertion > as greatest element. This order reflects the structure
of the graph. The naive understanding of ≤ is to set l < k iff l is ‘deeper nested’
2 In [Pr98], the are called complex vertices.

than k. The next definition is the mathematical implementation of this naive idea.
Furthermore the definition extends this idea to the set of vertices and edges. This
order will be important in the evaluation of contexts.

Definition 2. Let (V,E, ν,>, Cut, area) be a relational graph with cuts. Define
β : V

.
∪ E

.
∪ Cut

.
∪ {>} → Cut

.
∪ HA

.
∪ {>} by

β(x) :=
{

x for x ∈ Cut
.
∪ HA

.
∪ {>}

ctx(x) for x ∈ (V \HA)
.
∪ E

.

Now we set
x1 ≤ x2 :⇐⇒ ∃n ∈ N0.β(x1) ∈ arean(β(x2))

for x1, x2 ∈ V
.
∪ E

.
∪ Cut

.
∪ {>}.

To avoid misunderstandings, let

x < y :⇐⇒ x ≤ y ∧ y 6≤ x
x � y :⇐⇒ x ≤ y ∧ y 6= x

x ∼ y :⇐⇒ x ≤ y ∧ y ≤ x

For c ∈ Cut
.
∪ {>}, we furthermore set

≤[c] := {x ∈ V
.
∪ E

.
∪ Cut

.
∪ {>} |x ≤ c}

�[c] := {x ∈ V
.
∪ E

.
∪ Cut

.
∪ {>} |x � c}

The following is an example of a well-formed nested relational graph with cuts, its
diagram (we have written the names for the vertices end edges inside them), its
mapping β and the induced relation ≤. We see that ≤ is a quasiorder and that
each equivalence class of the induced equivalence relation ∼ contains exactly one
context. This will be elaborated after the example.

G := ({v1, v2, v3, v4, v5, v6, v7, v8}, {e1, e2, e3, e4, e5, e6},
{(e1, (v1, v6)), (e2, (v3, v1)), (e3, (v5, v3)), (e4, (v5)), (e5, (v2, v7), (e6, (v7, v8))},
>, {c1, c2}, {(>, {v1, v2, v6, e1, c1}), (c1, {v3, v4, e2, e3}),

(v4, {v5, e4}), (v6, {v7, e5, c2}), (c2, {v8, e6})})

e1v1e2

v2

v3

v4

c1

e3

e4
e5 e6v

v7 v8
5

v6 c2

(Remark: In [Da02] one of the authors provides rules how concept graphs with cuts are

drawn. In the graphical representation of nested concept graphs with cuts, we use the rules

of [Da02], and the representation of HAs is a merger of the representation of vertices and

cuts: A HA is drawn as a box, and this box contains in its inner space all the concept boxes,

ovals, and curves of the vertices, edges, and other cuts, resp., which the HA encloses (not

necessarily directly). We think that the graphical representation of nested concept graphs

is quite natural, and due to limited space, a further discussion of it is omitted here.)

x > v1 v2 v3 v4 v5 v6 v7 v8 e1 e2 e3 e4 e5 e6 c1 c2
β(x) > > > c1 v4 v4 v6 v6 c2 > c1 c1 v4 v6 c2 c1 c2

>, v1, v2, e1

c1, v3, e2, e3

v4, v5, e4

v6, v7, e5

c2, v8, e6

�� @@

As the example shows, it is conjecturable that ≤ is a quasiorder. This is not imme-
diately clear from the definitions, but it can be proven. Analogously to [Da02], we
get the following lemma:

Lemma 2. Let (V,E, ν,>, Cut, area) be a nested relational graph with cuts. Then
we have for k ∈ Cut

.
∪ HA

.
∪ {>}:

≤[k] =
⋃
{arean(k) |n ∈ N0} and �[k] =

⋃
{arean(k) |n ∈ N} .

Moreover, ≤ is a quasiorder such that the restritction ≤ |Cut .∪HA .
∪{>} is an order on

Cut
.
∪ HA

.
∪ {>} which is a tree with the sheet of assertion > as greatest element.

Lemma 2 yields that we can not have two different contexts k1, k2 with k1 ∼ k2.
On the other hand we have v ∼ ctx(v) and e ∼ ctx(e) for each vertex v /∈ HA and
each edge e. So we see that each class of ∼ contains exactly one context. In other
words: Each class contains a context k and all simple vertices v /∈ HA and all edges
e which are placed on the area of k. Thus k is a uniquely given representative of
the class, the mapping β from Definition 2 is the mapping which assigns to each
element the representing element of the equivalence class of the element.

Now it is easy to describe the mapping ctx in a purely order-theoretic way. We have
the following lemma:

Lemma 3. Let (V,E, ν,>, Cut, area) be a nested relational graph with cuts. For
each element x ∈ V

.
∪ E

.
∪ Cut

.
∪ {>}, we have:

ctx(x) = min{k ∈ Cut
.
∪ HA

.
∪ {>} |x � k} .

Proof: Let x ∈ V
.
∪ E

.
∪ Cut

.
∪ {>}. We set H := {h ∈ HA

.
∪ {>} |x � h}. We

have x ∈ area(ctx(x)). Thus Lemma 2 yields ctx(x) ∈ H.

According to Lemma 2, we know that H is totally ordered. Assume we have l ∈ H
with l < ctx(x). That is we have l ∈ aream(ctx(x)) for an m ≥ 1. Furthermore we
have x ∈ arean(l) for an n ≥ 1. So we have x ∈ arean+m(ctx(x)). From Lemma 1
we conclude n + m = 1, a contradiction to n,m ≥ 1. Thus ctx(x) is the minimal
element of H. 2

Sometimes we have to consider all elements which are enclosed by an hypostatic
abstraction, even if they are deeper nested in some cuts, but not if they are contained
by a deeper nested hypostatic abstraction. These are the elements x with ha(x) = h.
In order to to this, it is evident to define a mapping ha as follows:

Definition 3. Let (V,E, ν,>, Cut, area) be a nested relational graph with cuts. We
set

ha :
{
V

.
∪ E

.
∪ Cut→ HA

.
∪ {>}

x 7→ min{h ∈ HA
.
∪ {>} |x � h}

Furthermore we define a mapping encl : HA→ V
.
∪ E

.
∪ Cut by:

– encl1(h) := area(h),

– encln+1(h) :=
⋃
{area(c) | c ∈ encln(h) ∩ Cut}, and

– encl(h) :=
⋃
{encln(h) |n ∈ N}.

Lemma 4. Let G := (V,E, ν,>, Cut, area) be a relational graph with cuts and
nestings and let h ∈ HA. Then we have encl(h) = {x ∈ V

.
∪ E

.
∪ Cut |ha(x) = h}

Proof: We have
k = ha(x)⇐⇒ k = min{h ∈ HA

.
∪ {>} |x � h}

⇐⇒ x ∈ arean(h) with n ∈ N, and there is no l ∈ HA
.
∪ {>}

with x ∈ aream1(k) and k ∈ aream2(l), with m1,m2 ∈ N
⇐⇒ x ∈ encl(k) 2

It has to be investigated how the mappings ctx and ha are related to each other.
But before we do this, we first want to mention that neither ctx nor ha is order-
preserving, i. e. we do not have

x1 ≤ x2 =⇒ ctx(x1) ≤ ctx(x2) or x1 ≤ x2 =⇒ ha(x1) ≤ ha(x2) .

To see this, consider the following nested graph:

h
v

In this graph, we have ctx(v) = h, thus we have β(h) = h = β(v), so we have h ≤ v.
But we have ctx(h) = ha(h) = > 6≤ ctx(v) = ha(v) = h.

The following lemma shows some very simple connections between the mappings
ctx and ha.

Lemma 5. Let x, x1, x2 ∈ V
.
∪ E

.
∪ Cut

.
∪ {>}. Then we have:

x ≤ ctx(x) ≤ ha(x) , and ctx(x1) ≤ ctx(x2) =⇒ ha(x1) ≤ ha(x2) .

Proof: x ≤ ctx(x) ≤ ha(x) follows immediately from Lemma 3 and Definition 3.

From ctx(x1) ≤ ctx(x2) we conclude

{h ∈ Cut
.
∪ HA

.
∪ {>} |x2 � h} ⊆ {h ∈ Cut

.
∪ HA

.
∪ {>} |x1 � h} (1)

Now let h ∈ HA
.
∪ {>} with x2 � h. From (1) we conclude x1 � h. So we have

{h ∈ HA
.
∪ {>} |x2 � h} ⊆ {h ∈ HA

.
∪ {>} |x1 � h}, thus ha(x1) ≤ ha(x2). 2

We will only consider graphs in which vertices must not be deeper nested than any
relation they are incident with. This applies to all contexts, that is to cuts as well
as to hypostatic abstractions.

Definition 4. Let G := (V,E, ν,>, Cut, area) be a nested relational graph with
cuts. If ctx(e) ≤ ctx(v) for every e ∈ E and v ∈ Ve, then G is said to have
dominating nodes.

The following graphs do not have dominating nodes:

1 2
and

1 2
.

On the other hand: If an edge e is incident with an hypostatic abstraction h, it
seems to be natural that e has to be placed outside of h. This could be captured by
the following condition:

ha(e) > h for every e ∈ E and h ∈ Ve ∩HA

An example for a graph which violates this condition is the following:

1 2

Graphs like this will not arise in the applications we have in mind, but they cause
no troubles: The semantics etc. work for graphs like this as well. For this reason, we
have not included the condition above in our definition of nested relational graphs.

If a graph fulfills the condition above, we get the following lemma.

Lemma 6. Let G := (V,E, ν,>, Cut, area) be a nested relational graph with cuts
which satisfies

ha(e) > h for every e ∈ E and h ∈ Ve ∩HA

Then we have: If an edge e is incident with an hypostatic abstraction h, then e and
h are placed in the same hypostatic abstraction, i. e. we have ha(e) = ha(h).

Proof: On the one hand, we have ctx(e) ≤ ctx(h). From this we conclude, using
Lemma 5, that we have ha(e) ≤ ha(h). On the other hand, we have ha(e) > h.
The definition of ha yields ha(e) ≥ ha(h). So we have ha(h) ≤ ha(e) ≤ ha(h), thus
ha(h) = ha(e). 2

Next we want to stress the following: In contrast to simple concept graphs, the
condition of Definition 4 can not be replaced by

e ≤ v for every e ∈ E and v ∈ Ve (2)

To see this, consider the following graph and its induced quasiorder ≤:

v1

v2

v3 v4

e1
e2

v2, v3, v4, e2

>, v1, e1

We have ctx(e1) = ctx(v1) = ctx(v2) = > and ctx(e2) = ctx(v3) = ctx(v3) = v2,
hence the condition of of Definition 4 is satisfied. On the other hand we do not have
e1 ≤ v2, hence (2) is not fulfilled for e1.

Although e and h are placed in the same hypostatic abstraction, they do not have
to be placed in the same context, as the following example shows:

3 Syntax

3.1 Types and Names

With simple concept graphs, we can denote relations between the objects of a given
set of objects with relation names. Relations always have a fixed arity. For this
reason, we assign in the syntax of simple concept graphs (and other logic languages
like first order logic as well) to each relation name an arity.

It is reasonable to use concept graphs as a language to query relational databases,
as it is argued in [DH03]. Tables can be understood as relations, and queries as
operations on the algebra of relations. But as the discussion in [DH03] shows, the
expressive power of SQL goes beyond the possibility to describe relations on the
set of objects. A powerful feature of SQL are so-called set functions like COUNT or
SUM. Our understanding of COUNT is that COUNT is a dyadic relation between natural
numbers and relations: A number n stands in relation COUNT to a relation R if and
only if R contains exactly n tuples. So COUNT is not a classical relation on the set
of objects, but a relation between objects and relations. For this reason, we have to
extend to the notion of relations such that the tuples of a relation may contain not
only objects of our ground set, but complete relations again. In other words: We
will iterate relations.

To describe the structure of such relations, we will use signatures instead of arities.
A signature will not only give the arity of a relation, but they will furthermore
describe for each place of a tuple the structure of the entries in that place, e.g.
whether the entry is an object of our ground set or a relation itself. We will use the
sign ? to denote an arbitrary object of our ground set. A ’classical’ k-ary relation on
our ground set will be therefore described by the signature (?, . . . , ?). In particular,
signatures are a generalization of arities.

It will turn out that it is reasonable to understand even the objects of our ground
set as relations. These considerations yield the following definition of signature:

Definition 5 (Signatures).

Let ‘?’ be a sign. We set that ? is a signature, and if S1, . . . , Sn, n ∈ N0 are
signatures, then (S1, . . . , Sn) is a signature. The set of all signatures is denoted by
Sig. We partition Sig into the following types of signatures:

– The sign ? is called object signature.
– The signature () is called boolean signature.
– Every signature (?, . . . , ?) is called simple relation signature.
– All remaining signatures are called nested relation signatures.

We set furthermore Sig0 := Sig\{?}.

Next we have to define an alphabet for nested concept graphs. In the case of simple
concept graphs, we had relation names and assigned to each relation name its arity.
Thus, for nested concept graphs, the approach which suggest itself is to assign
signatures to relation names. But this approach is problematic, which can be again
explained with the relation COUNT in SQL. We have in fact an infinite number
of COUNT-relations, namely a relation COUNT between natural numbers and unary
relations, a relation COUNT between natural numbers and dyadic relations and so
on. But when COUNT is applied in a SQL-statement, it is applied to a relation where
its arity is known, so we know which of the different COUNT-relations should be
used. This is a situation similar to object-oriented languages where it is possible to

overload names, i. e. in C++ one function name can be implemented differently for
different input types or classes. We adopt this approach and define names as pairs
of so-called plain names and their signatures, i. e. a plain name can be used together
with different signatures. This yields the following definition.

Definition 6 (Alphabet).

An alphabet is a pair (C,N), where

– (C,≤C) is a finite ordered set whose elements are called concept names, and
– (N ,≤N) is a finite ordered set which consists of pairs (N,S) with S ∈ Sig.

Each element (N,S) ∈ N is called signed name. For the signed name (N,S),
we call N the (plain) name of (N,S) and S the signature of (N,S). We demand
that only names with the same signature can be compared, that is we demand
(N1, S1) ≤ (N2, S2) =⇒ S1 = S2 .

Let (N,S) ∈ N be a signed name.

– If S = ?, then (N,S) is called object name. The set of all object names is
denoted by NG.

– If S = (), then (N,S) is called boolean name. The set of all boolean names is
denoted by NB.

– If S = (?, . . . , ?), then (N,S) is called simple relation name. The set of all
simple relation names is denoted by NR,s.

– All remaining signed names (N,S) are called nested relation name. The set of
all nested relation names is denoted by NR,n.

Simple relation names and nested relation names are both called relation names.
The set of all relation names (i. e. NR,s

.
∪ NR,n) is denoted by NR.

We demand that we have a plain name .= with (.=, (S, S)) ∈ N for each S ∈ Sig.

3.2 Nested concept graphs

Nested concept graphs with cuts are built from nested relational graphs with cuts by
additionally labelling the vertices and edges with names. There are two important
points we have to meet:

First of all, when writing the diagram of a nested concept graph, it is desirable that
it is sufficient to use plain names. This is again a situation similar to object oriented
languages: When we have in C++ a function call of a function which is implemented
differently for differents input types, is has to be clear from the context (that is,
from the types of the parameter of the function) which implementation is meant.
This paradigma should apply to nested concept graphs as well, i. e.

If we use a plain name in the diagram of a concept graph, it has to be clear
from the context which signed name is denoted by the plain name.

Second, it is important that the labelling is (syntactically) reasonable, i. e. that
the graph can be interpreted in a model. To get an impression of this reflections,
consider the following two diagrams (where C is the plain part of a concept name
and g is a plain name):

G1 :=
:g

C:?1 G2 := C: *
:g

The hypostatic abstraction (that is the outer vertex) in G1 shall describe a (unary)
simple relation, which can be seen from the inner vertex, which is labelled with a
query marker ?i. So G1 can only be the diagram of a nested concept graph with
cuts if g is the plain part of the simple relation name (g, (∗)). Analogously, G2 can
only be the diagram of a nested concept graph with cuts if g is the plain part of
the boolean name (g, ()). We have similar considerations for simple concept graphs:
An edge e shall only be labelled with a reasonable relation name, that is, if we have
|e| = k, then e shall be labelled with a k-ary relation name. But there is a crucial
difference between simple and nested concept graphs: In simple concept graphs, it
can be derived from their underlying structure (i. e. , simple relational graphs) how
vertices and edges can be reasonable labelled. In nested concept graphs, this is not
possible. In the examples above, it depends on the name which is assigned to the
inner vertex how the hypostatic abstraction can be reasonable labelled.

Furthermore, we have another problem which may occur. Consider

G3 :=
:g

C:?1 :
D: *

?1

The question arises what kind of relation is described by the outer hypostatic ab-
straction. More specific: Which signature should g have? We see that g is a unary
relation name. From the first vertex in the outer hypostatic abstraction we conclude
furthermore that g is a unary simple relation name, but from the second vertex in
the outer hypostatic abstraction we conclude that g is a unary nested relation name.
This is contradictory, so G3 should not be the diagram of a well-formed nested con-
cept graph with cuts. And again, the names the vertices and edges are labelled with
are not chosen in contradiction to the underlying structure to the graph, but they
are chosen in contradiction to other names in the graph.

For this reason, the definition of nested concept graphs with cuts is done in two
steps. In the first step, we label the vertices and edges of a relational graph with cuts
with signed names. This will yield quasi nested concept graphs. From the labelling,
we can assign to each hypostatic abstraction h (and to other vertices and to the
edges) a set of signatures which is derived from the subgraph enclosed by h (G3

shows that we sometimes can not derive a unary signature for a given hypostatic
abstraction). After that, we only consider quasi nested concept graphs where each
vertex and edge has a uniquely determined signature and where all vertices and
edges are labelled accordingly to their signatures.

Definition 7 (Quasi Nested Concept Graph with Cuts).

A quasi nested concept graph with cuts over the alphabet (C,N) is a structure
G := (V,E, ν,>, Cut, area, κ, ρ) where

– (V,E, ν,>, Cut, area) is a nested relational graph with cuts that has dominating
nodes,

– κ : V
.
∪ E → C

.
∪ {>}

.
∪ N is a mapping such that κ(V \HA) ⊆ C

.
∪ {>},

κ(HA) = {>} and κ(E) ⊆ NR, and

– ρ : V → N
.
.
∪ {∗}

.

.
∪ {?i | i ∈ N} is a mapping such that for all h ∈ HA exists a

natural number ar(h) ∈ N0 with

{i | ∃v ∈ encl(h) with ρ(v) =?i} = {1, . . . , ar(h)} .

Moreover we set V ∗ := {v ∈ V | ρ(v) = ∗}, V ? := {v ∈ V | ρ(v) =?i, i ∈ N}, and
V G := {v ∈ V | ρ(v) ∈ N}. The nodes in V ∗ are called generic nodes, the nodes in
V ? are called query nodes, and the nodes in V G are called object nodes.

If a quasi nested concept graph with cuts is given, we can assign to all vertices and
edges a set of signatures.

Definition 8 (Signatures of Vertices, Edges, Hypostatic Abstractions).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a quasi nested concept graph with cuts over
the alphabet (C,N). We assign sets of signatures to vertices, edges and hypostatic
abstractions as follows:

1. For v ∈ V \HA, we set sig(v) := {?}.
2. Let h ∈ HA. We set sig(h)|i := {sig(v) | v ∈ V with ha(v) = h and ρ(v) =?i}

for 1 ≤ i ≤ ar(h), and sig(h) := sig(h)|1 × . . .× sig(h)|ar(h).
3. For e ∈ E with |e| = k, we set sig(e) = sig(e|1)× . . .× sig(e|k).

We will only consider graphs where the signatures of hypostatic abstractions (and
hence for edges, too) are uniquely determined. Furthermore, we demand that the
signed names we assign to vertices and edges match the signatures of the vertices
and edges, respectively. This yields the following definition:

Definition 9 (Nested Concept Graphs with Cuts).

A nested concept graph with cuts over the alphabet (C,N) is a quasi nested concept
graph with cuts G := (V,E, ν,>, Cut, area, κ, ρ) over the alphabet (C,N), where:

– For each h ∈ HA, we have |sig(h)| = 1. For x ∈ V
.
∪ E, we write sig(x) = S

instead of sig(x) = {S}. Moreover, for 1 ≤ i ≤ ar(h), we have sig(h)|i = {S}
for an S ∈ Sig, and we write sig(h)|i = S instead of sig(h)|i = {S}.

– If v ∈ V G\HA and ρ(v) = (N,S), then S = ? (i. e. (N,S) is an object name).
– If h ∈ V G ∩HA and ρ(h) = (N,S), then S = sig(h).
– If e ∈ E and κ(e) = (N,S), then S = sig(e).

If we have HA = ∅, then G is called simple concept graph with cuts. If furthermore
ρ : V → N

.
∪ {∗} holds, then G is called simple concept graph with cuts.

For the set E of edges, let Eid := {e ∈ E |κ(e) = .= } and Enonid := {e ∈ E |
κ(e) 6= .= }. The elements of Eid are called identity-links.

For each vertex and each edge, we can read the signature of the vertex and edge from
the graph, thus we can reconstruct the signature of the names which are assigned to
the vertices and edges. Furthermore we know that all vertices and edges are labelled
with names which match their signatures. For this reason, in the diagrams of the
graphs it is sufficient to label edges and vertices with plain names instead of signed
names.

4 Semantics

4.1 Models

Before we define the models for nested concept graphs with cuts, we first have to
define elements and relations of a signature over a given set of objects.

Definition 10 (Elements and Relations of a Signature).

Let G be a set of objects. A relation of signature ? is an element of G.3 The set
of all relations of signature ? is denoted by R? resp. by R?(G) (i. e. we have R? =
R?(G) = G).

Let S = (S1, . . . , Sn) be a signature. An element of signature S is an element of
RS1 × . . . × RSn (particularly for n = 1, the elements of signature (S1) are the
one-tuples (g) with g ∈ RS1). The set of all elements of signature S is denoted by
OS resp. by OS(G). A relation of signature S is a subset of OS. The set of all
relations of signature S is denoted by RS resp. by RS(G). Finally, let R(G) :=⋃
{RS(G) |S ∈ Sig}.

Example: Let G := N. We have the following examples of some signatures:

? () (?) (?, ?) (?, (?))
object ∅ (1) (1, 1) (1,{(3)})

(2) (1, 2) (4, {(5), (6)})
(3) (3, 4) (3, {(4), (5), (6)})
.

relation 1 ∅ ∅ ∅ ∅
2 {∅} {(1)} {(1, 1)} {(3, {(4)})}
3 {(3), (4)} {(1, 1), (1, 2)} {(1, {(3)}), (3, {(5), (6)})}
.

The two relations of signature () are independent from the ground set G. It will
turn out that they can be interpreted as truth-values, namely as false for ∅ and true
for {∅}.
For simple concept graphs, the models for these graphs are based on so-called power
context families ~K (see for example [Wi97, Pr98, Da02]). In a power context family,
we have a formal context4

K0 which encodes the concepts, and for each arity i ≥ 1,
we have a formal context Ki which encodes the relations of arity i. This approach
is transferred to signatures of relations: In nested power context families, we will
have a formal context KC which encodes the concepts and for each signature S, we
will have a formal context KS which encodes the relations of signature S.

Definition 11 (Nested Power Context Families).

A nested power context family is a family of contexts ~K := KC
.
∪ {KS |S ∈ Sig0}

with KC := (GC ,MC , IC) and KS := (GS ,MS , IS) for each S ∈ Sig0 such that we
have GS ⊆ OS(GC) for each signature S ∈ Sig0. We will abbreviate the term ‘nested
power context family’ by npcf.

The elements of GC are the (plain or ground) objects of ~K.

The elements of B(KC) are called type-concepts.

We set furthermore R0
~K

:=
⋃
S∈Sig0 B(KS) and R~K := R0

~K

.
∪ GC . The elements of

R~K are called relation-concepts.

If we have GS = OS(GC) for each signature S ∈ Sig0, the npcf is called object-
complete. If an object-complete npcf satisfies B(KS) = RS(GC) for each S ∈ Sig0,
it is called relation-complete.
3 It may seem odd to denote the elements of G by relations of signature ?, but this

terminology unifies the handling of simple vertices and HAs.
4 Do note mistake the (semantical) formal contexts of formal concept analysis with the

(syntactical) contexts of nested relational graphs.

Finally, we get the models for nested concept graphs by assigning the object names
to the objects of KC , the concept names to formal concepts in KC , and the relation
names of signature S to formal concepts in KS .

Definition 12 (Contextual Models for Alphabets).

Let (C,N) be an alphabet and let ~K := KC
.
∪ {KS |S ∈ Sig0} be a ncpf.

Let λ := λG
.
∪ λC

.
∪ λR be the disjoint union of the mappings λG :NG → GC,

λC : C → B(KC) and λR:NR
.
∪ NB → R~K. We call λ a ~K-interpretation of (C,N)

iff:

– λR((N,S)) ∈ B(KS) for all S ∈ Sig0,
– λC and λR are order-preserving, (i. e. for two concept-names C1, C2 we have
C1 ≤ C2 =⇒ λC(C1) ≤ λC(C2) and for two boolean- or relation-names
(N1, S), (N2, S) we have (N1, S) ≤ (N2, S) =⇒ λR((N,S1) ≤ λR((N,S2)),
and

– for each S ∈ Sig0 and for all elements g1, g2 ∈ KS, we have g1 = g2 ⇐⇒
(g1, g2) ∈ Ext(λR((.=, (S, S)))).

The pair (~K, λ) is called (nested) context-interpretation of (C,N) or (nested) con-
textual structure over (C,N).

According to our terminology, λG and λR assign to a name (N,S) a relation of
signature S. Therefore, these two mappings could have been ’aggregated’ under one
name. We have kept the distinction between λG and λR to keep the terminology
of simple power context families and contextual models, as they are defined in the
works of Wille, Prediger, Dau et. al.

4.2 Evaluation

When a concept graph is evaluated in a model, we have to assign relations of
our universe of discourse G to them such that the signatures of the vertices are
respected. That is: To a vertex v with sig(v) = S, we have to assign a relation
with signature S. In particular, we assign objects of G to simple vertices. These
assignments are done by valuations. Valuations do not need to be total, i. e. we will
consider valuations where we assign values only to a subset of V . Nevertheless, there
are some conditions which have to be satisfied:

1. It is natural to assign to each vertex v ∈ V N the relation λ(ρ(v)).
2. For a fixed i ∈ N and a fixed hypostatic abstraction h ∈ HA

.
∪ {>}, all vertices

v with ha(v) = h and ρ(v) =?i shall denote the same object.

Furthermore, we want to define specific partial valuations for contexts. Assume
we want know which relations can be assigned to the query vertices in a context
such that the context evaluates to true or false in a given model. Then we need to
know which objects are assigned to generic vertices above the context, but, on the
other hand, we should not have assigned objects yet to generic vertices which are
enclosed by the context, or to query vertices which are enclosed by any deeper nested
hypostatic abstraction. This will be done by open partial valuations. The extensions
of the open partial valuations to the query vertices in the hypostatic abstraction
are the partial valuations which allow us to evaluate the graph which is enclosed by
a hypostatic abstraction (and all enclosed cuts) in a given model. These extensions
will be called closed partial valuations for that context. These considerations yield
the following definition:

Definition 13 (Partial and Total Valuations).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a nested concept graph with cuts and let
M := (~K, λ) be a model. A mapping ref : V ′ → R~K is called partial valuation of
G, iff

1. V G ⊆ V ′ ⊆ V and ref(v) = λ(ρ(v)) for all v ∈ V G, and
2. if v1, v2 ∈ V with ha(v1) = ha(v2) and ρ(v1) = ρ(v2) =?i for an i ∈ N, and if

v1 ∈ V ′, then v2 ∈ V ′ and ref(v1) = ref(v2).
3. ref(v) ∈ GC for v ∈ V ′\HA, and ref(v) ∈ B(~KS) for v ∈ V ′ ∩ HA and

sig(v) = S.

Next we have to define open and closed partial valuations for a context k. So let
ref : V ′ → R~K be a partial valuation and let k ∈ Cut

.
∪ HA

.
∪ {>} be a context.

If V ′ ⊇ {v ∈ V | ctx(v) > k} and if V ′ ∩{v ∈ V | ctx(v) ≤ k} = ∅, then ref is called
open partial valuation for the context k.

Now let h be a hypostatic abstraction, let ref be an open partial valuation for h,
and for 1 ≤ i ≤ ar(h), let xi be a relation of signature sig(h)|i, i. e. , xi ∈ B(~KSi)
with Si := sig(h)|i. Then we set

ref [x1, . . . , xar(h)/h] :

dom(ref) ∪ (encl(h) ∩ V ?)→ R~K

v 7→
{
ref(v) , if v ∈ dom(ref)\(encl(h) ∩ V ?)

xi , if v ∈ encl(h) ∩ V ? and ρ(v) =?i
,

Each such mapping ref [x1, . . . , xar(h)/h] is called closed partial valuation for k.

A partial valuation ref : V → R~K is called (total) valuation of G.

Please note that a partial valuation for an hypostatic abstraction h assigns a relation
to h itself (even for ρ(h) = ∗ or ρ(h) =?i).

Partial valuations for a context k can be extended to partial valuations for contexts
which are directly enclosed by k. We have the following lemma:

Lemma 7 (Continuations of Part. Val. are Part. Val. for Contexts).

Let k be a context and let ref be a partial valuation for k. Let r̃ef : be a mapping
with r̃ef ⊇ ref and dom(r̃ef = dom(ref) ∪ (V ∩ area(k)). Then we have:

1. If c ∈ area(k) is a cut, then r̃ef is a partial valuation for c.
2. If c ∈ area(k) is a hypostatic abstraction and if x1, . . . , xar(h) ∈ R~K, then

ref [x1, . . . , xar(h)/h] is partial valuation for h.

Now we can define how a nested concept graph G is valuated in a model, i. e. in a
nested contextual structure M := (~K, λ).

For a given hypostatic abstraction h, h can only be evaluated if we have assigned
relations to all query vertices which are enclosed by h (which is done by closed
partial valuations for h). Now h shall describe the relation of all tuples of objects,
which can replace the query vertices such that the evaluation yields true. For this
reason, we define in the next definition two different notions:

1. When a hypostatic abstraction (or an enclosed cut) k evaluates for a closed
partial valuation ref in M to true, we will write M |= G[k, ref].

2. a hypostatic abstraction h and an open partial valuation ref for h describes the
relation of all tuples of objects which can replace the the query vertices such
that h evaluates to true. This relation will be denoted by RM,G,h,ref .

Definition 14 (Evaluation).

Let G := (V,E, ν,>, Cut, area, κ, ρ) be an nested relation graph with cuts and let
M := (R~K, λ) be a model. Inductively over the tree Cut

.
∪ HA

.
∪ {>}, we define

1. M |= G[k, ref] for each context k ∈ Cut
.
∪ HA

.
∪ {>} and every closed partial

valuation ref : V ′ ⊆ V → R~K for k:
M |= G[k, ref] :⇐⇒

ref can be extended to a partial valuation r̃ef : V ′∪(V ∩area(k))→ R~K

(i. e. , r̃ef(v) = ref(v) for all v ∈ V ′), such that the following conditions
hold:
– r̃ef(v) ∈ λ(κ(v)) for each vertexv ∈ V ∩ area(k) with κ(v) 6= >

(vertex condition)
– r̃ef(e) ∈ λ(κ(e)) for each edge e ∈ E ∩ area(k)

(edge condition)
– r̃ef(h) = RM,G,h,ref for each hyp. abstraction h ∈ HA ∩ area(k)

(hyp. abst. condition and iteration over Cut
.
∪ HA

.
∪ {>})

– M 6|= G[c, r̃ef] for each cut c ∈ Cut ∩ area(k)
(cut condition and iteration over Cut

.
∪ HA

.
∪ {>})

2. Let h be a hypostatic abstraction, let ref be an open partial valuation for h, and
for 1 ≤ i ≤ ar(h), let xi be a relation of signature sig(h)|i. We set:

RM,G,h,ref := {(x1, . . . , xar(h)) |M |= G[h, ref [x1, . . . , xar(h)/h]]

Finally we define
RM,G := RM,G,>,∅

It is not immediately clear that this definition yields a well-defined entailment re-
lation |= and well-defined relations RM,G,h,ref , but this can be seen inductively
over the tree of contexts. In order to do this, please note that the vertex condition
only applies to simple vertices. Moreover, the edge-condition an only be evaluated
because we consider graphs with dominating nodes: To see this, consider a con-
text k, a partial valuation ref : V ′ → R~K for k and an extension r̃ef of ref
to area(k). Let e ∈ area(k) be an edge which shall be evaluated. As we have
V ′ ⊇ {v ∈ V | ctx(v) > k} by Definition 13, we know that r̃ef assigns objects to all
vertices v with ctx(v) ≥ k = ctx(e). Now condition ctx(e) ≤ ctx(v) for every v ∈ Ve
of Definition 4 makes sure that we have already assigned objects to all vertices
which are incident with e.

5 The Φ-Operator

In this section, we give a definition of the Φ-operator for nested concept graphs.
In [Da02], one of the authors already provided a definition of the Φ-operator which
translates a concept graph with cut to an closed FOPL-formula with the same
meaning. Now we consider concept graphs which describe relations, so it seems
natural that the Φ-operator should yield an FOPL-formula with free variables.
This is true for simple concept graphs which describe relations, and this idea is
extended to nested concept graphs with cuts. The main idea if the following: A sim-
ple concept graph which describes an n-ary relation is mapped to a set definition
{(x1, . . . , xn) | f(x1, . . . , xn)}, where f is a FOPL-formula with the free variables
x1, . . . , xn (and f is the result of the Φ-operator of [Da02] for simple concept graphs
with cuts). If we consider nested concept graphs with cuts, we allow nested set

definitions as well, i. e. we allow a set definition to occur in the formula of another
set definition.

Let G := (V,E, ν,>, Cut, area, κ, ρ) be a concept graph with cuts, nestings, and
dominating nodes. First, we assign to each v ∈ V a term Φt(v) as follows: If ρ(v) =
g, g ∈ N , we set Φt(v) := g. To each v ∈ V with ρ(v) = ∗ or ρ(v) =?i, i ∈ N
we assign a variable such that the same variable is assigned to different vertices
v1, v2 iff ρ(v1) = ρ(v2) =?i, i ∈ N and ha(v1) = ha(v2).5 We need a further variable
αempty /∈ {αv | v ∈ V ∗ ∪ V ?}.

Now we assign to each context k ∈ Cut
.
∪ HA

.
∪ {>} a set definition Φ(G, k), if

k is a hypostatic abstraction, and a formula Φ(G, k), if k is a cut. This is done
inductively over the tree (Cut

.
∪ HA

.
∪ {>},≤). So let k be a context such that

Φ(G, l) is already defined for each context l < k.

First, we define a formula f which encodes all edges, vertices, cuts and hypo-
static abstractions which are directly enclosed by k. Set f := ∃αempty.>(αempty), if
area(k) = ∅. Otherwise, let f be the conjunction of the following formulas:6

κ(w)(Φt(w)) with w ∈ area(k) ∩ V ,

κ(e)(Φt(w1), . . . ,Φt(wj)) with e ∈ area(k) ∩ Enonid and ν(e) = (w1, . . . , wj) ,

Φt(w1) =Φt(w2) with k ∈ area(k) ∩ Eid und ν(k) = (w1, w2) ,
¬Φ(G, d) with d ∈ area(k) ∩ Cut , and

Φt(h) =Φ(G, h) with h ∈ area(k) ∩HA .

It is sufficient to use the plain names instead of the signed names.

Let v1, . . . , vn be the vertices of G which are enclosed by c and which fulfill ρ(vi) = ∗.
If k ∈ Cut, we set

Φ(G, k) := ∃αv1∃αvn .(f) .

For k ∈ HA and 1 ≤ i ≤ ar(h), let βi be the variable which Φt assigns to each
v ∈ area(h) with ρ(v) =?i. Now we set

Φ(G, k) := { (β1, . . . ,βar(h)) | ∃αv1∃αvn .(f) } .

Finally set Φ(G) := Φ(G,>), and the definition of Φ is finished.

In the following, we provide some examples for the Φ-operator. We start with a very
simple graph, which is the graph of Figure 2 in [DH03].

STRING: Joachim PERSON

Lastname
Age

STRING: ?1

*INTEGER:Firstname

This graph is translated to7

5 i. e. we assign variables such that we have

Φt(v1) = Φt(v2) ⇐⇒ (v1 = v2 ∨ (∃g ∈ N . ρ(v1) = ρ(v2) = g)

∨ (∃i ∈ N . ρ(v1) = ρ(v2) =?i ∧ ha(v1) = ha(v2))) .

6 The signs which have to be understood literally are underlined.
7 Due to space limitations, we abbreviated STRING by STR, INTEGER by INT, PER-

SON by PER and RESEARCHAREA by RA.

{(x1) | ∃x2 . STR(Joachim) ∧ STR(x1) ∧ INT (x2) ∧ PER(x1, Joachim, x2)}

The next graphs are the graphs of Figure 7 and Figure 8 in [DH03]. They involve
cuts, thus we will have negated subformulas in their translations.

RESEARCHAREASTRING:CG

PERSON Age

Topic STRING:?1

STRING:?2 INTEGER:*

*STRING:
Lastname Firstname

Lastname

and

RESEARCHAREASTRING:CG

PERSON AgeSTRING:?2 INTEGER:*
Lastname

Topic STRING:?1*STRING:

Lastname Firstname

These graphs are translated to

{(x1, x2) | ∃x3.∃x4 . STR(x1) ∧ STR(x2) ∧ INT (x3) ∧ STR(x4) ∧ STR(CG)
∧ PER(x1, x2, x2) ∧RA(x4, x2) ∧ ¬(CG = x4)}

resp.

{(x1, x2) | ∃x3 . STR(x1) ∧ STR(x2) ∧ INT (x3) ∧ PER(x1, x2, x3)
∧ ¬∃x4.(STR(x4) ∧ STR(CG) ∧RA(x4, x2) ∧ CG = x4)}

Finally we provide a graph with a hypostatic abstraction. It is taken from Figure
11 in [DH03]. The HA will be translated to a nested set definition.

:*

RESEARCHAREA

STRING:?1
�

AVG_2

Topic

Lastname

Lastname

Firstname

PERSON Age

STRING:?2

2

1 REAL:?1

STRING:?2

INTEGER:?3

First we translate the outer context. This yields:

{(x1, x2) | ∃x3.REAL(x1) ∧ STR(x2) ∧ >(x3) ∧AV G(x1, x3) ∧ x4 = {. . .}}

The inner context yields:

{(y1, y2, y3) |STR(y1) ∧ STR(y2) ∧ INT (y3) ∧RA(x2, y1) ∧ PER(y1, y2, y3)}

So, we translate the graph above to

{(x1, x2) | ∃x3.REAL(x1) ∧ STR(x2) ∧ >(x3) ∧AV G(x1, x3)
∧ x4 = {(y1, y2, y3) |STR(y1) ∧ STR(y2) ∧ INT (y3)

∧RA(x2, y1) ∧ PER(y1, y2, y3)}}

6 Outlook

As said in the introduction, this is only the very beginning of a mathematical foun-
dation for query graphs. There is a lot more work to do: The ground domain is typed,
so it is reasonable to develop a theory with typed signatures (but first attempts have
shown that this approach leads to unexpected difficulties). Moreover, it has to be
investigated whether the expressiveness of the graphs is restricted enough such that
a sound and complete calculus is possible, and if this is the case, a calculus should
be found. Finally, it is desirable that there will be implementations of these graphs
to query existing databases: Only human interaction can show whether the theo-
retical considerations of [DH03] and this paper yield working and comprehensible
query graphs for databases.

References

[Bu91] R. W. Burch: A Peircean Reduction Thesis: The Foundations of Topological
Logic. Texas Tech University Press, 1991.

[Da02] F. Dau: The Logic System of Concept Graphs with Negations and its Rela-
tionship to Predicate Logic PhD-Thesis, Darmstadt University of Technology,
2002. To appear.
www.mathematik.tu-darmstadt.de/∼dau/dissertation.pdf

[DH03] F. Dau, J. Hereth: Nested Concept Graphs: Applications for Databases. Sub-
mitted for ICCS 2003.

[EGSW00] P. Eklund, B. Groh, G. Stumme, R. Wille: A contextual-logic extension of
toscana. In: B. Ganter, G. W. Mineau (Eds.): Conceptual Structures: Logical,
Linguistic, and Computational Issues. LNAI 1867, Springer Verlag, Berlin–
New York 2000, 453-467.

[EG01] P. Eklund, B. Groh: A cg-query engine based on relational power context
families. In: G. Mineau (Ed.): Conceptual Structures: Extracting and Repre-
senting Semantics. ICCS 2001. Dept. of Computer Science, Quebec, Canada,
33-46.

[GW99a] B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin–Heidelberg–New York 1999.

[Pe35] C. S. Peirce. Collected Papers. Harvard University Press, Cambrigde, Mas-
sachusetts, 1931-1935.

[Pr98] S. Prediger: Kontextuelle Urteilslogik mit Begriffsgraphen. Ein Beitrag zur
Restrukturierung der mathematischen Logik. Aachen, Shaker Verlag 1998.

[Po02] S. Pollandt: Relation Graphs: A Structure for Representing Relations in Con-
textual Logic of Relations. In: U. Priss,, D. Corbett, G. Angelova (Eds.): Con-
ceptual Structures: Integration and Interfaces. LNAI 2393, Springer Verlag,
Berlin–New York 2002, 34–48.

[So84] J. F. Sowa: Conceptual Structures: Information Processing in Mind and Ma-
chine. Addison Wesley Publishing Company Reading, 1984.

[So00] J. F. Sowa: Knowledge Representation: Logical, Philosophical, and Compu-
tational Foundations. Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[SoWWW] J. F. Sowa: Semantic Foundations of Contexts.
http://www.jfsowa.com/ontology/contexts.htm

[Wi97] R. Wille: Conceptual Graphs and Formal Concept Analysis. In: D. Lukose
et al. (Hrsg.): Conceptual Structures: Fulfilling Peirce’s Dream. LNAI 1257,
Springer Verlag, Berlin–New York 1997, 290–303.

[Wi01] R. Wille: Lecture Notes on Contextual Logic of Relations. FB4-Preprint,
Darmstadt University of Technology, 2000.

